
CSE 154
LECTURE 11: REGULAR EXPRESSIONS

What is form validation?
• validation: ensuring that form's values are correct

• some types of validation:
• preventing blank values (email address)

• ensuring the type of values

• integer, real number, currency, phone number, Social Security number,
postal address, email address, date, credit card number, ...

• ensuring the format and range of values (ZIP code must be a 5-digit integer)

• ensuring that values fit together (user types email twice, and the two must
match)

A real form that uses validation

Client vs. server-side validation
Validation can be performed:

• client-side (before the form is submitted)
• can lead to a better user experience, but not secure (why not?)

• server-side (in PHP code, after the form is submitted)
• needed for truly secure validation, but slower

• both
• best mix of convenience and security, but requires most effort to program

An example form to be validated
<form action="http://foo.com/foo.php" method="get">
<div>
City: <input name="city" />

State: <input name="state" size="2" maxlength="2" />

ZIP: <input name="zip" size="5" maxlength="5" />

<input type="submit" />

</div>
</form> HTML

• Let's validate this form's data on the server...

output

Basic server-side validation
$city = $_POST["city"];

$state = $_POST["state"];

$zip = $_POST["zip"];

if (!$city || strlen($state) != 2 || strlen($zip) != 5) {

print "Error, invalid city/state/zip submitted.";

} PHP

• basic idea: examine parameter values, and if they are bad, show an error message
and abort. But:

• How do you test for integers vs. real numbers vs. strings?

• How do you test for a valid credit card number?

• How do you test that a person's name has a middle initial?

• (How do you test whether a given string matches a particular complex format?)

Regular expressions
/^[a-zA-Z_\-]+@(([a-zA-Z_\-])+\.)+[a-zA-Z]{2,4}$/

• regular expression ("regex"): a description of a pattern of text

• can test whether a string matches the expression's pattern

• can use a regex to search/replace characters in a string

• regular expressions are extremely powerful but tough to read

(the above regular expression matches email addresses)

• regular expressions occur in many places:

• Java: Scanner, String's split method (CSE 143 sentence generator)

• supported by PHP, JavaScript, and other languages

• many text editors (TextPad) allow regexes in search/replace

• The site Rubular is useful for testing a regex.

http://rubular.com/

Regular expressions
This picture best describes regex.

Basic regular expressions
/abc/

• in PHP, regexes are strings that begin and end with /

• the simplest regexes simply match a particular substring

• the above regular expression matches any string containing "abc":

• YES: "abc", "abcdef", "defabc", ".=.abc.=.", ...

• NO: "fedcba", "ab c", "PHP", ...

Wildcards: .

• A dot . matches any character except a \n line break

•/.oo.y/ matches "Doocy", "goofy", "LooNy", ...

• A trailing i at the end of a regex (after the closing /) signifies a case-insensitive match

•/all/i matches “Allison Obourn", “small", “JANE GOODALL", ...

Special characters: |, (), \
• | means OR

• /abc|def|g/ matches "abc", "def", or "g"

• There's no AND symbol. Why not?

• () are for grouping

• /(Homer|Marge) Simpson/ matches "Homer Simpson" or "Marge

Simpson"

• \ starts an escape sequence

• many characters must be escaped to match them literally: / \ $. [] () ^ * + ?

• /<br \/>/ matches lines containing
 tags

Quantifiers: *, +, ?
• * means 0 or more occurrences

• /abc*/ matches "ab", "abc", "abcc", "abccc", ...

• /a(bc)*/ matches "a", "abc", "abcbc", "abcbcbc", ...

• /a.*a/ matches "aa", "aba", "a8qa", "a!?xyz__9a", ...

• + means 1 or more occurrences

• /Hi!+ there/ matches "Hi! there", "Hi!!! there", ...

• /a(bc)+/ matches "abc", "abcbc", "abcbcbc", ...

• ? means 0 or 1 occurrences

• /a(bc)?/ matches "a" or "abc"

More quantifiers: {min,max}

• {min,max} means between min and max occurrences (inclusive)

• /a(bc){2,4}/ matches "abcbc", "abcbcbc", or "abcbcbcbc"

• min or max may be omitted to specify any number

• {2,} means 2 or more

• {,6} means up to 6

• {3} means exactly 3

Practice exercise

• When you search Google, it shows the number of pages of results as
"o"s in the word "Google". What regex matches strings like "Google",
"Gooogle", "Goooogle", ...? (try it) (data)

• Answer: /Goo+gle/ (or /Go{2,}gle/)

http://rubular.com/r/4cf1WVnL4A
http://courses.cs.washington.edu/courses/cse154/14sp/lectures/slides/notes/regex-google.txt

Anchors: ^ and $
• ^ represents the beginning of the string or line;

$ represents the end

• /Jess/ matches all strings that contain Jess;
/^Jess/ matches all strings that start with Jess;
/Jess$/ matches all strings that end with Jess;
/^Jess$/ matches the exact string "Jess" only

• /^Alli.*Obourn$/ matches “AlliObourn", “Allie Obourn", “Allison E

Obourn", ...
but NOT “Allison Obourn stinks" or "I H8 Allison Obourn"

• (on the other slides, when we say, /PATTERN/ matches "text", we really
mean that it matches any string that contains that text)

Character sets: []

• [] group characters into a character set; will match any single character

from the set

• /[bcd]art/ matches strings containing "bart", "cart", and "dart"

• equivalent to /(b|c|d)art/ but shorter

• inside [], many of the modifier keys act as normal characters

• /what[!*?]*/ matches "what", "what!", "what?**!", "what??!", ...

• What regular expression matches DNA (strings of A, C, G, or T)?

• /[ACGT]+/

Character ranges: [start-end]

• inside a character set, specify a range of characters with -

• /[a-z]/ matches any lowercase letter

• /[a-zA-Z0-9]/ matches any lower- or uppercase letter or digit

• an initial ^ inside a character set negates it

• /[^abcd]/ matches any character other than a, b, c, or d

• inside a character set, - must be escaped to be matched

• /[+\-]?[0-9]+/ matches an optional + or -, followed by at least one digit

Practice Exercises
What regular expression matches letter grades such as A, B+, or D- ? (try it) (data)

What regular expression would match UW Student ID numbers? (try it) (data)

What regular expression would match a sequence of only consonants, assuming
that the string consists only of lowercase letters? (try it) (data)

http://rubular.com/r/pI1rvXzxz9
http://courses.cs.washington.edu/courses/cse154/14sp/lectures/slides/notes/regex-lettergrades.txt
http://rubular.com/r/ORmAOalILn
http://courses.cs.washington.edu/courses/cse154/14sp/lectures/slides/notes/regex-uwstudentid.txt
http://rubular.com/r/cvL9smgzmH
http://courses.cs.washington.edu/courses/cse154/14sp/lectures/slides/notes/regex-consonants.txt

Escape sequences

• special escape sequence character sets:

• \d matches any digit (same as [0-9]); \D any non-digit ([^0-9])

• \w matches any word character (same as [a-zA-Z_0-9]); \W any non-word char

• \s matches any whitespace character (, \t, \n, etc.); \S any non-whitespace

• What regular expression matches names in a "Last, First M." format

with any number of spaces?

• /\w+,\s+\w+\s+\w\./

Regular expressions in PHP (PDF)
• regex syntax: strings that begin and end with /, such as "/[AEIOU]+/"

function description

preg_match(regex, string) returns TRUE if string matches regex

preg_replace(regex, replacement, string)
returns a new string with all substrings that
match regex replaced by replacement

preg_split(regex, string)
returns an array of strings from given string
broken apart using given regex as delimiter
(like explode but more powerful)

http://www.php.net/pcre
http://www.phpguru.org/downloads/PCRE Cheat Sheet/PHP PCRE Cheat Sheet.pdf
http://www.php.net/manual/en/reference.pcre.pattern.syntax.php
http://www.php.net/preg-match
http://www.php.net/preg-replace
http://www.php.net/preg-split

PHP form validation w/ regexes
$state = $_POST["state"];

if (!preg_match("/^[A-Z]{2}$/", $state)) {

print "Error, invalid state submitted.";

} PHP

• preg_match and regexes help you to validate parameters

• sites often don't want to give a descriptive error message here (why?)

Regular expression PHP example
replace vowels with stars

$str = "the quick brown fox";

$str = preg_replace("/[aeiou]/", "*", $str);

"th* q**ck br*wn f*x"

break apart into words

$words = preg_split("/[]+/", $str);

("th*", "q**ck", "br*wn", "f*x")

capitalize words that had 2+ consecutive vowels

for ($i = 0; $i < count($words); $i++) {

if (preg_match("/*{2,}/", $words[$i])) {

$words[$i] = strtoupper($words[$i]);

}

} # ("th*", "Q**CK", "br*wn", "f*x") PHP

The die function
die("error message text"); PHP

• PHP's die function prints a message and then completely stops code
execution

• it is sometimes useful to have your page "die" on invalid input

• problem: poor user experience (a partial, invalid page is sent back)

The header function
header("HTTP header text"); # in general

header("Location: url"); # for browser redirection PHP

• PHP's header function can be used for several common HTTP messages

• sending back HTTP error codes (404 not found, 403 forbidden, etc.)

• redirecting from one page to another

• indicating content types, languages, caching policies, server info, ...

• you can use a Location header to tell the browser to redirect itself to another page

• useful to redirect if the user makes a validation error

• must appear before any other HTML output generated by the script

Using header to redirect between pages
header("Location: url"); PHP

$city = $_POST["city"];

$state = $_POST["state"];

$zip = $_POST["zip"];

if (!$city || strlen($state) != 2 || strlen($zip) != 5) {

header("Location: start-page.php"); # invalid input; redirect

} PHP

• one problem: User is redirected back to original form without any clear error
message or understanding of why the redirect occurred. (We can improve
this later.)

Handling invalid data
function check_valid($regex, $param) {

if (preg_match($regex, $_POST[$param])) {

return $_POST[$param];

} else {

code to run if the parameter is invalid

die("Bad $param");

}

}

...

$sid = check_valid("/^[0-9]{7}$/", "studentid");

$section = check_valid("/^[AB][A-C]$/i", "section"); PHP

• Having a common helper function to check parameters is useful.
• If your page needs to show a particular HTML output on errors, the die

function may not be appropriate.

Regular expressions in HTML forms
How old are you?

<input type="text" name="age" size="2" pattern="[0-9]+" title="an integer" />

<input type="submit" /> HTML

output

• HTML5 adds a new pattern attribute to input elements

• the browser will refuse to submit the form unless the value matches the

regex

http://www.w3schools.com/html/html5_form_attributes.asp

