
CSE 154
LECTURE 9: SUBMITTING DATA (POST)

Drop-down list: <select>, <option>
menus of choices that collapse and expand (inline)

<select name="favoritecharacter">

<option>Jerry</option>

<option>George</option>

<option selected="selected">Kramer</option>

<option>Elaine</option>

</select> HTML

• option element represents each choice
• select optional attributes: disabled, multiple, size
• optional selected attribute sets which one is initially chosen

output

Using <select> for lists
<select name="favoritecharacter[]" size="3" multiple="multiple">

<option>Jerry</option>

<option>George</option>

<option>Kramer</option>

<option>Elaine</option>

<option selected="selected">Newman</option>

</select> HTML

• optional multiple attribute allows selecting multiple items with shift- or ctrl-
click
• must declare parameter's name with [] if you allow multiple selections

• option tags can be set to be initially selected

output

Option groups: <optgroup>
<select name="favoritecharacter">
<optgroup label="Major Characters">
<option>Jerry</option>
<option>George</option>
<option>Kramer</option>
<option>Elaine</option>

</optgroup>
<optgroup label="Minor Characters">
<option>Newman</option>
<option>Susan</option>

</optgroup>
</select> HTML

• What should we do if we don't like the bold appearance of the optgroups?

output

Grouping input: <fieldset>, <legend>
groups of input fields with optional caption (block)

<fieldset>

<legend>Credit cards:</legend>

<input type="radio" name="cc" value="visa" checked="checked" /> Visa

<input type="radio" name="cc" value="mastercard" /> MasterCard

<input type="radio" name="cc" value="amex" /> American Express

</fieldset> HTML

• fieldset groups related input fields, adds a border; legend supplies a caption

output

Styling form controls
element[attribute="value"] {

property : value;

property : value;

...

property : value;

} CSS

input[type="text"] {

background-color: yellow;

font-weight: bold;

} CSS

• attribute selector: matches only elements that have a particular attribute value
• useful for controls because many share the same element (input)

output

URL-encoding
• certain characters are not allowed in URL query parameters:

• examples: " ", "/", "=", "&"

• when passing a parameter, it is URL-encoded (reference table)

• “Allison's cool!?" → “Allison%27s+cool%3F%21"

• you don't usually need to worry about this:

• the browser automatically encodes parameters before sending them

• the PHP $_GET and $_POST arrays automatically decode them

• ... but occasionally the encoded version does pop up (e.g. in Firebug)

http://www.w3schools.com/TAGS/ref_urlencode.asp

HTTP GET vs. POST requests
• GET : asks a server for a page or data

• if the request has parameters, they are sent in the URL as a query string

• POST : submits data to a web server and retrieves the server's response

• if the request has parameters, they are embedded in the request's HTTP packet,
not the URL

• For submitting data to be saved, POST is more appropriate than GET

• GET requests embed their parameters in their URLs

• URLs are limited in length (~ 1024 characters)

• URLs cannot contain special characters without encoding

• private data in a URL can be seen or modified by users

Form POST example
<form action="http://foo.com/app.php" method="post">

<div>

Name: <input type="text" name="name" />

Food: <input type="text" name="meal" />

<label>Meat? <input type="checkbox" name="meat" /></label>

<input type="submit" />

<div>

</form> HTML

output

The htmlspecialchars function

• text from files / user input / query params might contain <, >, &, etc.

• we could manually write code to strip out these characters

• better idea: allow them, but escape them

htmlspecialchars returns an HTML-escaped version of a string

$text = "<p>hi 2 u & me</p>";

$text = htmlspecialchars($text); # "<p>hi 2 u & me</p>"

http://www.php.net/htmlspecialchars

Uploading files
<form action="http://webster.cs.washington.edu/params.php"

method="post" enctype="multipart/form-data">

Upload an image as your avatar:

<input type="file" name="avatar" />

<input type="submit" />

</form> HTML

• add a file upload to your form as an input tag with type of file

• must also set the enctype attribute of the form

output

Processing an uploaded file in PHP
• uploaded files are placed into global array $_FILES, not $_POST

• each element of $_FILES is itself an associative array, containing:

• name : the local filename that the user uploaded

• type : the MIME type of data that was uploaded, such as image/jpeg

• size : file's size in bytes

• tmp_name : a filename where PHP has temporarily saved the uploaded file

• to permanently store the file, move it from this location into some other file

Uploading details
<input type="file" name="avatar" /> HTML

• example: if you upload borat.jpg as a parameter named avatar,

• $_FILES["avatar"]["name"] will be "borat.jpg"
• $_FILES["avatar"]["type"] will be "image/jpeg"
• $_FILES["avatar"]["tmp_name"] will be something like

"/var/tmp/phpZtR4TI"

output

Processing uploaded file, example
$username = $_POST["username"];

if (is_uploaded_file($_FILES["avatar"]["tmp_name"])) {

move_uploaded_file($_FILES["avatar"]["tmp_name"],

"$username/avatar.jpg");

print "Saved uploaded file as $username/avatar.jpg\n";

} else {

print "Error: required file not uploaded";

} PHP

• functions for dealing with uploaded files:
• is_uploaded_file(filename)
• returns TRUE if the given filename was uploaded by the user
• move_uploaded_file(from, to)
• moves from a temporary file location to a more permanent file

• proper idiom: check is_uploaded_file, then do move_uploaded_file

