
CSE 154
LECTURE 5: INTRO TO PHP

URLs and web servers
http://server/path/file

• usually when you type a URL in your browser:
• your computer looks up the server's IP address using DNS
• your browser connects to that IP address and requests the given file
• the web server software (e.g. Apache) grabs that file from the server's local file

system, and sends back its contents to you

• some URLs actually specify programs that the web server should run, and then send
their output back to you as the result:
https://webster.cs.washington.edu/cse190m/quote.php

• the above URL tells the server webster.cs.washington.edu to run the
program quote2.php and send back its output

Server-Side web programming

• server-side pages are programs written using one of many web programming
languages/frameworks

◦ examples: PHP, Java/JSP, Ruby on Rails, ASP.NET, Python, Perl

• the web server contains software that allows it to run those programs and send back
their output

• each language/framework has its pros and cons

◦ we will use PHP for server-side programming

http://php.net/
http://java.sun.com/products/jsp/
http://www.rubyonrails.org/
http://www.asp.net/
http://www.djangoproject.com/
http://www.cgi101.com/learn/

Why PHP?

There are many other options for server-side languages: Ruby on Rails, JSP, ASP.NET, etc.

Why choose PHP?

• free and open source: anyone can run a PHP-enabled server free of charge

• compatible: supported by most popular web servers

• simple: lots of built-in functionality; familiar syntax

• available: installed on UW's servers (Dante, Webster) and most commercial web
hosts

• well-documented: type php.net/functionName in browser Address bar to get
docs for any function

http://www.php.net/

Lifecycle of a PHP web request

• browser requests a .html file (static content): server just sends that file
• browser requests a .php file (dynamic content): server reads it, runs any script code

inside it, then

Console output: print
print "text"; PHP

print "Hello, World!\n";

print "Escape \"chars\" are the SAME as in Java!\n";

print "You can have

line breaks in a string.";

print 'A string can use "single-quotes". It\'s cool!'; PHP

Hello, World! Escape "chars" are the SAME as in Java! You can have line breaks in a

string. A string can use "single-quotes". It's cool! output

•some PHP programmers use the equivalent echo instead of print

Arithmetic Operations

• + - * / %
. ++ --
= += -= *= /= %= .=

• many operators auto-convert types: 5 + "7" is 12

Variables
$name = expression; PHP

$user_name = "PinkHeartLuvr78";

$age = 16;

$drinking_age = $age + 5;

$this_class_rocks = TRUE; PHP

• names are case sensitive; separate multiple words with _

• names always begin with $, on both declaration and usage

• implicitly declared by assignment (type is not written; a "loosely typed" language)

Types
• basic types: int, float, boolean, string, array, object, NULL

• test what type a variable is with is_type functions, e.g. is_string

• gettype function returns a variable's type as a string (not often needed)

• PHP converts between types automatically in many cases:

• string→ int auto-conversion on + ("1" + 1 == 2)

• int→ float auto-conversion on / (3 / 2 == 1.5)

• type-cast with (type):

• $age = (int) "21";

http://www.php.net/manual/en/language.types.integer.php
http://www.php.net/manual/en/language.types.float.php
http://www.php.net/manual/en/language.types.boolean.php
http://www.php.net/manual/en/language.types.string.php
http://www.php.net/manual/en/language.types.array.php
http://www.php.net/manual/en/language.types.object.php
http://www.php.net/manual/en/language.types.null.php
http://www.php.net/manual/en/function.is-string.php
http://www.php.net/gettype
http://www.php.net/language.types.type-juggling

for loop

for (initialization; condition; update) {

statements;

} PHP

for ($i = 0; $i < 10; $i++) {

print "$i squared is " . $i * $i . ".\n";

} PHP

if/else statement
if (condition) {

statements;

} else if (condition) {

statements;

} else {

statements;

} PHP

• can also say elseif instead of else if

while loop (same as Java)
while (condition) {

statements;

} PHP

do {

statements;

} while (condition); PHP

• break and continue keywords also behave as in Java

http://www.php.net/manual/en/control-structures.break.php
http://www.php.net/manual/en/control-structures.continue.php

Comments
single-line comment

// single-line comment

/*

multi-line comment

*/ PHP

• like Java, but # is also allowed
• a lot of PHP code uses # comments instead of //
• we recommend # and will use it in our examples

