
University of Washington, CSE 154
Homework Assignment 8: Weather

Thanks to Marty Stepp and Jessica Miller for pieces of this assignment write up

This assignment is about using Ajax to fetch data in text, XML, and JSON formats.

When you Google “weather” you will see some information much like the screenshots above. Multiple places keep track of
weather data like this including OpenWeatherMap. OpenWeatherMap provides data in both XML and JSON formats. Your
task for this assignment is to write JavaScript code for a web page to display this weather data similarly to how Google
does.

We will provide you with the HTML (weather.html) and CSS (weather.css) code to use. Turn in the following files:

• weather.js, the JavaScript code for your weather web page's behavior
• weather.css, the CSS styles for your web page's appearance (you don't need to modify it, but you can if you like)
• weather.html, the weather web page (you don't need to modify it, but you can if you like)

You are allowed to modify weather.html and weather.css but are not required to do so. You can change the page's
general appearance, so long as it meets the requirements in this spec. We encourage you to be creative and have fun.

This program uses Ajax to fetch data from the Webster server. Ajax can only connect to a web server from a page located
on that same server. This means that you must upload your page to Webster to test it. If you try to fetch data from
Webster while viewing the page from your local hard drive, the Ajax request will fail.

Data:
Your program reads data from a web service at https://webster.cs.washington.edu/cse154/weather.php .
You may assume that all data sent to your program from weather.php is valid and follows the formats below.

This web service accepts three different types of queries, specified using a query string with a parameter named mode.
Each type of query produces output in text, XML, or JSON format. (You can test queries by typing in their URLs in your web
browser's address bar and seeing the result.) If you submit an invalid query, such as one missing a necessary parameter, your
request will return an HTTP error code of 400 (Invalid Request) rather than the default 200.

1. list: The first query mode is cities, which outputs plain text containing all city names on file in a plain text format,
with each on its own line. The following query would return the results below (abbreviated):

https://webster.cs.washington.edu/cse154/weather.php?mode=cities

Abidjan
Accra
Adana ...

The provided web service generally returns the names in alphabetical order, but your code should not rely on this. Just
display the names in whatever order the service returns them, and don't make assumptions about the order.

2. precipitation: The second query mode is rain, which outputs information about the weather for the current day in
XML format. In addition to the always-required mode query parameter, the rain query requires a second parameter
named city. The following query returns the results below (abbreviated):

https://webster.cs.washington.edu/cse154/weather.php?mode=rain&city=seattle

<weatherdata>
<location>

<name>Seattle</name>
<type/>
<country>US</country>
<timezone/>

 <location altitude="0" latitude="47.606209" longitude="-122.332069"
 geobase="geonames" geobaseid="0"/>
 </location>
 <credit/>
 <meta>
 <lastupdate/>
 <calctime>0.0227</calctime>
 <nextupdate/>
 </meta>
 <sun rise="2015-05-24T12:21:16" set="2015-05-25T03:51:09"/>
 <forecast>
 <time from="2015-05-24T06:00:00" to="2015-05-24T09:00:00">
 <symbol number="800" name="sky is clear" var="01n"/>
 <precipitation value="0.17" unit="3h" type="rain"/>
 <windDirection deg="213.004" code="SSW" name="South-southwest"/>
 <windSpeed mps="3.11" name="Light breeze"/>
 <temperature unit="celsius" value="15.31" min="15.307" max="15.31"/>
 <pressure unit="hPa" value="1019.54"/>
 <humidity value="69" unit="%"/>
 <clouds value="clear sky" all="0" unit="%"/>
 </time> …

The above is a partial version of the data that you will get back. The real data will have several more time tag sections. You
do not need to deal with all of the data that you get back. We will only use the blue pieces. You should output the data
from the first 7 time tag sections (or less if there are less than 7 time tags present). Note that the chance of precipitation
is the value for all in the clouds tag, it is NOT from the precipitation tag.

If the city you pass doesn't have any data (such as "seeeattle"), your request will return an HTTP error code of 410 (Gone).

3. forecast: The third query mode is forecast, which returns JSON data about that city's forecasted weather for the
next 7 days. The forecast query requires an additional city parameter, just like the last query.

https://webster.cs.washington.edu/cse154/weather.php?mode=forecast&city=seattle

{"cod":"200","message":0.0292,
 "city":{"id":5809844,"name":"Seattle",
 "coord":{"lon":-122.332069,"lat":47.606209},
 "country":"US","population":0,"sys":{"population":0}},
 "cnt":7,"list":[{"dt":1432411200,"temp":{"day":286.95,"min":285.58,"max":289.2,
 "night":285.93,"eve":289.2,"morn":285.58},"pressure":977.38,"humidity":0,
 "weather": [{"id":501,"main":"Rain","description":"moderate rain",
 "icon":"10d"}],
 "speed":0.98,"deg":244,"clouds":77,"rain":4.85},
 {"dt":1432497600,"temp":{"day":288.05,"min":284.69,"max":290.02,
 "night":285.85,"eve":290.02,"morn":284.69},
 "pressure":974.6,"humidity":0,
 "weather": …

If you submit a query for an unknown city, your request will return an HTTP error code of 410 (Gone). The web service
returns data starting with the current weather and increasing one day at a time. The web service returns 7 days forecast for
each city, but your code should not assume this. You may assume that the days are in ascending order by date.

Appearance and Behavior:
All style or appearance aspects not mentioned in the provided CSS file are subject to the preference of the web browser.
The screenshots in this document were taken in Chrome on Windows, which may differ from your system.

The HTML page given to you shows a heading of "City Name:" followed by an input element with id of citiesinput.
This is followed by a datalist with an id of cities. When the page loads, the box is empty and disabled. Using Ajax,
the page should fetch the list of all cities from the web service as described previously, fill the datalist with an option
for each name, and then enable input. More information about datalists can be found on the homework page of the
web site.

The rest of the page is inside of a large div with the id of resultsarea. Initially this div is hidden, but when the user
clicks Search after typing a name in the input box, you should make this area appear. (You can make an area of the page
appear/disappear by setting the .style.display property on its HTML DOM object.)

Nothing should happen when the user types a name into the input box; wait until they click the Search button to search.
You may assume that the user doesn't click Search again until the current search is done downloading.

City data: When the user chooses a city and clicks Search, that city’s information should be fetched using Ajax and injected
into the page into the resultsarea. Specifically, the city name, the date and the description of the weather should be
each in their own paragraphs inserted into the location div. The city name should have the capitalization it has in the
XML and a class of title. The current temperature should come next followed by ℉ inserted into the
currentTemp div. The date should be the current time. You can get this by printing the result of Date().

Precipitation data: There is an HTML table with the id of graph, initially empty:

<table id="graph"></table> <!-- city percipitation data should be inserted here -->

If a city is typed in the input box, you should use the DOM to fill the table with one row of data: a vertical bar
representing that city's likelihood of rainfall for that time in the data. For example, the table after searching for Seattle
might look like this:

<table id="graph">
 <tr><td><div>0%</div></td> <!-- no chance of rain -->
 <td><div>40%</div></td> <!-- 40% chance of rain -->
... <td><div>18%</div></td></tr> <!-- 18% chance of rain -->
</table>

The precipitation bars are drawn as divs inside each table cell td of one row of the table. Each ranking bar’s height
should be one pixel for each percentage it is likely to rain. For example, if it was 18% likely to rain the bar would be 18
pixels tall.

The data will contain information for 1 – 100 different times. Display the first 7 times worth of data (or less if there are
less than 7).

Within each bar appears the percentage number for that time. Some lower percentages have numbers that drop below the
bottom of the graph; this is expected and you don't need to treat this as a special case.

Precipitation data should initially be computed but it should be hidden until the user clicks the button with the text
“Precipitation” on it.

Temperature data: The page contains a div with the id temps. This contains a slider. When the user clicks the search
button and receives a response back, this slider should appear. It should change the temperature displayed in the upper left
when moved. This slider should disappear if the Precipitation button is clicked and reappear if the Temperature button is
clicked. The temperature displayed should be rounded to the nearest whole number.

The temperature the slider shows represents the temperature for the current day. At the furthest left position it should
show the current temperature. One position to the right it should show the prediction for the next 3 hour block of time.
You can find this in the XML. It is in the following type of tag:

 <temperature unit="celsius" value="15.31" min="15.307" max="15.31"/>

You can get all of these temperature tags and show the value of the first at the first position on the slider, the second at the
second position and so on.

Forecast data: The HTML page contains a table with the id forecast. When the search button is clicked make an Ajax
request for the forecast as described above. You will need to add two rows to the table. The first will contain the images of
the weather. These images can be found at:

https://openweathermap.org/img/w/<icon value from JSON>.png

The second row will contain the day temperature (rounded) for each day followed by a degree sign (escaped as: °).

https://openweathermap.org/img/w/%3cicon

Missing data: Some cities do not have any data. In such a case, the weather.php query will return an error code of 410.
You should handle this case by displaying a message indicating that there was no data for the chosen city. There is already a
div in the page with the id of nodata that contains such a message, but it is hidden by default, so you must show it in
such cases.

You can check what kind of Ajax error occurred by examining the ajax.status field in your failure handler.

Subsequent Searches: The user can use the page to make multiple searches. When making a search, any data from a
previous search should be cleared from the screen. You can remove all HTML content inside an area of the page by
setting its innerHTML to an empty string. For example, to clear out the div with the id of example:

document.getElementById("example").innerHTML = ""; // clear out any child elements

Be careful to test your page with several searches in a row. For example, if one search has no data you will have shown the
nodata message. But on the next search, you should hide this message.

Loading Feedback: In each section of the page where data is shown, there is a small div with an animated "loading"
GIF image that should be displayed while the data is being fetched from the server. For example:

<div class="loading" id="loadinggraph"> Searching...</div>

This HTML is already in the provided page, but it is your job to make it appear or disappear at appropriate times. There is
a loading area with the id of loadingnames to the right of the Search button. It should be visible until the page is done
loading the list of city names from the server, then it should disappear for the remainder of the page view.

There are three other loading areas with ids of loadinglocation, loadinggraph, and loadingforecast. All three
should be shown when the user clicks Search to search for data about a name. When the data for one of the Ajax requests
arrives from the server and you are finished processing that data, hide the corresponding loading div. The page should
work for multiple requests; show/hide these loading divs properly on each subsequent search as well.

If there is an error with any Ajax request, hide all of the loading areas on the page.

(The provided weather.php web service delays itself by 1-2 seconds to help you test your loading behavior. If you want to test other delays,
pass an optional parameter delay to the service for the number of seconds you want it to pause before returning its data.)

Error Handling: If an error occurs during any Ajax request, other than the expected HTTP 410 error when a name's
ranking is not found, your program should show a descriptive error message about what went wrong. For full credit, your
error message should not be an alert; it must be injected into the HTML page. The exact format of the error message is
up to you, but it should at least include some descriptive error text about what went wrong. You can inject any error
messages into the provided HTML page into the div with id of errors:

<div id="errors"></div> <!-- an empty div for inserting any error text -->

You should also hide all "loading" animation images on the page if any error occurs. In order to test your error-handling,
try temporarily changing the URL of the web service in your code to a bogus file name such as notfound.php. This will
trigger an HTTP 404 File Not Found error on every request.

Implementation and Grading:
For full credit, your HTML/CSS code must pass the W3C validators. Your JavaScript code should pass our JSLint tool
with no errors. Your .js file must run in JavaScript strict mode by putting "use strict"; at the top.

Follow the course style guide. Separate content (HTML), presentation (CSS), and behavior (JS). As much as possible,
your JS code should use styles/classes from the CSS rather than manually setting each style property in the JS. In
particular, no CSS styles should be set in JS other than heights of the precipitation bar divs drawn in the graph, or
showing/hiding various elements on the page by setting their display property. Use unobtrusive JavaScript, so that no
JavaScript code, onclick handlers, etc. are embedded into the HTML.

Follow reasonable style guidelines similar to a CSE 14x programming assignment. In particular, avoid redundant code, and
use parameters and return values properly. Make extra effort to minimize redundant code. Capture common operations
as functions to keep code size and complexity from growing.

Use the "module pattern" shown in class to wrap your code in an anonymous function. No global variables or
symbols are allowed, however one "module-global" var is allowed on this assignment; values should be declared at the
most local scope possible. If a constant value is used, you may declare it as a module-global "constant" variable
IN_UPPER_CASE.

Fetch data using Ajax. Be careful to avoid redundancy in your Ajax code; if you do similar Ajax operations in many places,
make a helper function(s). Process XML data using the XML DOM. Process JSON data using JSON.parse.

Your JavaScript code should have adequate commenting. The top of your file should have a descriptive comment header
describing the assignment, and each function and complex section of code should be documented. If you make requests,

comment about what you are requesting and what your code will do with the data that is returned.

Format your code similarly to the examples from class. Properly use whitespace and indentation. Use good variable and
function names. Avoid lines of code more than 100 characters wide.

Do not place a solution to this assignment on a public web site. Upload your files to the Webster server at:

https://webster.cs.washington.edu/students/your_uwnetid/hw8/weather.html

Copyright © Allison Obourn, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

