
CSE 154 sample midterm 1
1. HTML / CSS Tracing

Draw a picture of how the following HTML/CSS code will look when the browser renders it on-screen.

Assume that the HTML is wrapped in a valid full page with a head and body. Indicate a non-white

background by shading lightly or by drawing diagonal lines like .

a)

b)

<div id="foo">

 <div id="bar">kkk</div>

 <div class="baz">mmm</div>

 <div class="baz">ooo</div>

</div>

div div {

margin: 40px;

background-color: yellow;

}

div { padding: 20px; }

#foo { border: black 2px dashed; }

<div id="foo”">

 <div id="bar">kkk</div>

 <div class="baz">mmm</div>

 <div class="baz">ooo</div>

 <div class="bar">hhh

 <div>ddd</div>

 </div>

 <div id="cat">^..^</div>

</div>

.baz { float: right; }

.bar { float: left; }

div { border: black solid 2px; }

#foo > div { background-color: red; }

#cat { clear: both; }

2. HTML / CSS Coding
Write the HTML and CSS code necessary to recreate the following appearance onscreen, between but not

including the thick black lines. (No manual line breaks have been inserted into the text.) Assume that the

code you're writing will be placed inside the body of the page. Part of your grade comes from choosing

appropriate tags to match the semantics of the content. You should also write valid code that would pass the

W3C validators, and separate stylistic information from HTML.

Some details about the desired appearance:

 All text uses default sizes and fonts, except for the characters' names which are written in a sans-

serif font.

 The section of dialogue is 50px from the right edge of the page and occupies 16em in width. No

manual line breaks have been inserted into the text.

 The text for each character's name is bold and underlined.

 The images come from the files inigo.jpg and rugen.jpg and are drawn at their default sizes.

 Rugen's lines are colored with a background of #DDDDDD or (red=221, green=221, blue=221).

5px separate these images from any surrounding content.

 5px of vertical space separate each of the bulleted lines.

Mark up the text on the next page with your HTML tags. If a tag can't physically be written in the space

provided, write it in the margins and draw an arrow to where it should be inserted in the text. Write the CSS

styles on the page after next.

2. HTML / CSS Coding (writing space)

 Inigo:

 Hello. My name is Inigo Montoya. You killed

 my father. Prepare to die.

 Count Rugen:

 No!

 Inigo:

 Offer me money! Power, too. Promise me that!

 Count Rugen:

 All that I have and more! Please!

 Inigo:

 Offer me everything I ask for!

 Count Rugen:

 Anything you want.

 Inigo:

 I want my father back, you son of a

2. PHP

Write the PHP code for two partial web pages for ordering food from an online store. The first page you

will write is a form named order.php that allows the user to choose what kind of food to buy and how

many to buy. In your form, include a drop-down menu of food items available. Include a text box for the

user to enter a quantity of the item to purchase (2-characters-wide), and an "Order" button to submit the

form. The form should look like this:

The food items to list should be based on what JPG food images are available in the current directory. For

example, if the current directory contains apple.jpg and steak.jpg, then "apple" and "steak" appear in

the drop-down list.

Write the portion of order.php that would appear between <body> and </body>. You don't need to write

any CSS.

The second page you will write is named order-submit.php. The form in order.php submits its data

as a POST request to order-submit.php. The output of order-submit.php is an HTML page

fragment, a single paragraph indicating information about the order as described below. (Do not use print

or echo.)

The store's current inventory is stored in a file named inventory.txt on the server in the current

directory. Each line of the file represents one item available in the store, its quantity available, and its price

per unit, separated by tabs. Assume that the file exists, that its contents are valid, and that there are no

duplicates. Here is an example inventory:

apple 4 1.00
chicken 1 3.25
cookie 38 0.25
milk 9 4.50
tomato 27 0.50

In general your task is to look up the price per unit of the item the user is ordering, and use this price to

compute the total order cost. For example, if the item costs $0.50 and the user orders 7 of them, the total

order is 7 * 0.50 = $3.50.

The page's output in the general successful case is to inform the user that the order was successful, display

the total order cost (you do not need to round it), and show the user a series of images representing what was

ordered. For example, if the user orders 4 apples, your output should display 4 copies of apple.jpg.

Here is another output from ordering 15 of the item 'cookie'. (the output wraps to the next line in the

browser)

The store is only able to complete an order if that food item is in the inventory and the store has enough of

that item in stock. For example, if the inventory matches the above text file (which has 9 'milk' in stock),

and the user tries to order 10 of 'milk', the following error should be displayed:

The items in this inventory may overlap with the images that were listed previously, but there might be some

images that don't have representation in the inventory text file and vice versa. If an item is not present in the

inventory file, assume that its quantity available in stock is 0 and display the same sort of error message.

You do not need to modify the inventory.txt file or update its quantity of the item being ordered.

If the food item or quantity parameters are not passed, issue an HTTP 400 error. If they are present, you may

assume that the food item value passed is a string and the quantity value passed is a positive integer.

