
1 of 10 

CSE 154, Spring 2014 
Final Exam, Tuesday, June 10, 2014 

 

Name: ___________________________________________ 

Quiz Section: ___________________   TA: ___________________ 

Student ID #: ___________________ 

Rules: 

 You have 110 minutes to complete this exam. 

You may receive a deduction if you keep working after the instructor calls for papers. 

 This test is open-book, but closed notes.  You may not use printed/written notes or practice exams. 

 You may not use any computing devices, including calculators, cell phones, or music players. 

 Unless otherwise indicated, your code will be graded on proper behavior/output, not on style. 

 Please do not abbreviate code, such as writing ditto marks ("") or dot-dot-dot marks (...). 

You may write ID for document.getElementById and QS for document.querySelectorAll. 

 You may not use JavaScript frameworks such as jQuery or Prototype when solving problems. 

 If you enter the room, you must turn in an exam and will not be permitted to leave without doing so. 

 You must show your Student ID to a TA or instructor for your submitted exam to be accepted. 

 

Good luck!  You can do it! 

 

*('O')* 
 

 

 

 

 

Problem Description Earned Max 

1 HTML / CSS Tracing  20 

2 PHP  20 

3 JS  20 

4 JS / Ajax / JSON  20 

5 SQL  20 

X Extra Credit  1 

TOTAL Total Points  100 

 



2 of 10 

1. HTML / CSS Tracing 

Draw a picture of how the following HTML/CSS code will look when the browser renders it on-screen.  Assume that 

the HTML is wrapped in a valid full page with a head and body.  Indicate a non-white background by shading lightly 

or by drawing diagonal lines like   .  It is possible that some CSS rules shown will not apply to any elements. 

<div> 
  <div class="id">*('O')*</div> 
  <div> 
    <span id="id">^..^</span> 
    <span class="class">7 7 7 7</span> 
  </div> 
 
  <div class="class"> 
    <span>8 8 8 8</span> 
    <div class="id">9 9<br />9 9</div> 
    <div id="class">? ?<br />? ?</div> 
    <div>2 2 2 2</div> 
  </div> 
  <span id="five">5 5 
                  5 5</span> 
</div> 
<div id="foo">foo</div> 

div { border: black 2px solid;   
   overflow: hidden;} 
.class { 
 text-align: right; 
 background-color: yellow;} 
.class > div {width: 60%;} 
div div > div {background-color: white;} 
.id { float: right;} 
#id {float: left;} 
#five{text-align: right;} 
#foo{margin-left: 3em;} 

 
 



3 of 10 

2. PHP 
Write the PHP code for a web page donations.php that displays donors who have donated amounts in a specified 

range.  Assume that there is a provided page with a form where the user can type the name of a cause and select a 

donation level.  The form will submit to your donations.php.  Here is the relevant HTML from that provided page, 

and a screenshot of its appearance: 

  <h1>Donation Search</h1> 
  <form action="donations.php" method="get"> 
    <div> 
      <input type="radio" name="level" value="bronze"/> bronze 

         <input type="radio" name="level" value="silver"/> silver 
      <input type="radio" name="level" value="gold"/> gold 
    </div> 
    <div><input type="text" name="cause" /> Cause name</div> 
    <div><input type="submit" value="View donations" /></div> 
  </form> 

The bronze donation range is amounts between 0 and 100 

inclusive, silver between 100 exclusive and 500 inclusive and 

gold above 500. 

Your PHP page should accept the query parameters from the 

above form, open the text file for the correct cause, and search it for donations in the range matching the selected 

category.   

Display each donation as a bullet in an unordered list, showing the donor and the amount separated by a dash (-).  At 

the bottom of the page output the total amount donated from this group. If the donation was matched, the amount 

donated should be added to the total twice.  

The following screenshots show the PHP page output after the user submits the form with various values: 

1. Bronze – cause: Kermit for president 

 

2. Silver level - cause: Kermit for 

president 

 

3. Gold level –  cause: Kermit 

for president 

 

4.Bronze –  cause: Pooh for president 

 

5. No level selected 

 

You may assume that the user will submit parameters with the appropriate values (e.g. the level will always be gold, 

silver or bronze) if they submit parameters.  However, they may omit parameters. If they do your code should print an 

error message explaining what went wrong. You may assume that a file for the cause the user submits exists and is 

valid in the format described above.  You can write just the code that would go inside the page body; you don't need 

to output a head section or a complete page. Use the browser's default styling; do not write any CSS for this problem. 

Write your answer on the next page. 

 

Each cause has a corresponding text file in the current directory that contains 

all donations for that cause. The file may not have the exact name of the 

cause but it will contain the exact name. For example, if the user types 

“kermit” it should match “presidentkermitfrog.txt”. If there is more than one 

file that contains the name of the cause you should select the first one. Each 

line in the file contains the donator’s name, the donation amount and “yes” 

if the donation was matched, “no” otherwise. Each item is separated from the 

others by a semicolon (“:”), as in the example below at right. 

Hermione Granger:42:yes 
Costco:5000:no 
CSE 154 Students:126:no 
Trillian:60000:yes 
Paddington Bear:4:yes 



4 of 10 

2. PHP  (writing space) 

 



5 of 10 

3. JavaScript / DOM 

Write the JavaScript code to add behavior to the following page for keeping track of a to-do-list.  The page UI allows 

the user to type an item into a text box.  The user can click the "add" button to add the item to the bottom of the list.  

Each word in the phrase should be inserted as a li, inside a ul with the id of list.  

If the user wishes to remove an item he or she can type the text of the item he or she wishes to remove in the text box 

and click the “remove” button. This should be case insensitive. For example, if the list only contains “foo” and the 

user tries to remove “FoO”, it should be removed. If the user tries to remove an item that is in the list multiple times 

only the first occurrence should be removed.  

The items should have background colors that alternate between white and yellow (first white, then yellow, then 

white, yellow, etc.). This should still be the case no matter how many items are removed or added and no matter what 

order these operations are done in. You may not use the CSS3 nth-child pseudo selector to do this.  

The code should work for multiple clicks of the buttons.  On each click it should clear any previous information you 

typed in the input boxes.  Do not use any JavaScript libraries such as jQuery or Prototype.  Here is the relevant 

HTML code for the page: 

<h1>My super nifty to-do list</h1> 

<ul id="list"></ul> 

<div> 

   <input type="text" id="item" /> 

  <button id="add">add</button> 

  <button id="remove">remove</button> 

</div> 

These screenshots show the state after items have been added, and the state after items have been removed. 

1. Before anything has been added 

 
 

 

3. After remove of item “go to the beach” 

 

2. After 5 items added and none removed 

 
 

 

4. After remove of item “buy cookies” 

 

 

 

 

 

 

 

 

 

Write your answer on the next page. 



6 of 10 

3. JavaScript / DOM (writing space) 
 
 



7 of 10 

4. Ajax/JSON 

Suppose that there is a web service named flights.php, located on your web server in the same directory as your 

code.  This service outputs JSON data describing flights between various cities.  In this problem you will write Ajax 

JavaScript code to contact the web service (using a GET request), examine its JSON data, and display a list of 

possible flight prices and carriers.  

The page contains two textboxes where the user can specify the start location and end location, a check box that they 

can check if they want to only see non-stop flights (flights with 0 stops) and a “Go!” button. When the button is 

pressed you should send an Ajax request passing the parameter of “start”. You can assume that the user has typed a 

valid location into each box before pressing the button   

The JSON data returned by the web service consists of a list of end locations, each of which has a list of flights 

associated with it. The list of flights contains lists which each contain a price, a carrier and the number of stops.  

{ 
"Edinburgh":{ 

"start":"Seattle", 
"flights":[{"carrier":"Delta","price":812,"stops":2}, 

     {"carrier":"Air France","price":1020,"stops":0}, 
     {"carrier":"Air France","price":1190,"stops":3}] 

}, 
"New York":{ 

"start":"Seattle", 
"flights":[{"carrier":"British Airlines","price":782,"stops":1}, 

  {"carrier":"Delta","price":1562,"stops":2}, 
  {"carrier":"United","price":957,"stops":1}, 
  {"carrier":"KLM","price":687,"stops":3}, 
  {"carrier":"KLM","price":1458,"stops":1}] 

}  
   } 

 

The relevant existing HTML in the page is the following: 

<div> 
  <label>Start location: <input type="text" id="start" /></label> 
  <label>End location: <input type="text" id="dest" /></label> 
  <label>Non-stop? <input type="checkbox" id="stops"></label> 
  <button id="go">Go!</button> 
</div> 
<div id="results"></div> 

When the “Go!” button is clicked, clear previous results and read the JSON data with Ajax.  Add a h1 to the results 

div containing the text “Flights from” and then the start and destination locations. Turn each flight's data into a 

paragraph in the results div.  In each paragraph, write the price of the ticket (with a “$”) followed by the word 

“from”, the carrier’s name and then the word “with”, the number of stops and the word “stops”.  If the flight has a 

price below 1000 display its row in bold. For the example JSON shown above, the page is shown twice below, once 

with only non-stop flights and once with all flights. 

 

 

You may assume that the JSON data is valid in the format described previously, the data typed into the text boxes is 

valid, and that the .php service is reachable.  You may not use any Javascript libraries such as Prototype and 

JQuery. 

 

Write your answer on the next page. 



8 of 10 

4. Ajax/JSON (writing space) 



9 of 10 

5. SQL 

Write an SQL query to search the world database for all languages that are spoken as the official language of 

at least two "newly growing" countries.  We will define a "newly growing" country as a country that has both of the 

following qualities: became independent after the year 1900, and contains at least one city with a population of over 

one million. For example, Malay would be listed because it is the official language of Malaysia which contains Kuala 

Lumpur (population 1,297,526) and became independent in 1957, and Indonesia which contains Jakarta (population 

9,604,900) and became independent in 1945. Each language should be listed alphabetically and only once.  

Recall the world tables: 

    

 

 

 

 

 

When run on world database, your query produces the results at left. 

If you join too many tables together that are not needed for the query, you 

will not receive full credit. You should solve this problem using only the 

SQL syntax shown in class and the textbook. 

 

 

 

 

 

+---------+ 

| name    | 

+---------+ 

| Arabic  | 

| Chinese | 

| English | 

| French  | 

| German  | 

| Korean  | 

| Malay   | 

| Russian | 

| Spanish | 

+---------+ 

9 rows in set (69 ms) 



10 of 10 

X. Extra Credit 
Draw a picture of your TA as a superhero. 

(This is just for fun; any picture that appears to reflect more than a few moments' work will receive credit.) 


