
CSE 154
LECTURE 24: JSON

Pros and cons of XML
• pro:

• standard open format; don't have to "reinvent the wheel" for storing new types
of data

• can represent almost any general kind of data (record, list, tree)
• easy to read (for humans and computers)
• lots of tools exist for working with XML in many languages

• con:
• bulky syntax/structure makes files large; can decrease performance (example)
• can be hard to "shoehorn" data into a good XML format
• JavaScript code to navigate the XML DOM is bulky and generally not fun

http://en.wikipedia.org/wiki/MathML#Example_and_comparison_to_other_formats

An example of XML data
<?xml version="1.0" encoding="UTF-8"?>

<note private="true">

<from>Alice Smith (alice@example.com)</from>

<to>Robert Jones (roberto@example.com)</to>

<to>Charles Dodd (cdodd@example.com)</to>

<subject>Tomorrow's "Birthday Bash" event!</subject>

<message language="english">

Hey guys, don't forget to call me this weekend!

</message>

</note> XML

• fairly simple to read and understand
• can be parsed by JavaScript code using XML DOM

• Is there any other data format that is more natural for JS code to process?

JavaScript Object Notation (JSON)
JavaScript Object Notation (JSON): Data format that
represents data as a set of JavaScript objects

• invented by JS guru Douglas Crockford of Yahoo!

• natively supported by all modern browsers (and
libraries to support it in old ones)

• not yet as popular as XML, but steadily rising due to its
simplicity and ease of use

http://www.crockford.com/

Background: Creating a new object
var name = {

fieldName: value,

...

fieldName: value

}; JS

var pt = {

x: 4,

y: 3

};

pt.z = -1;

alert("(" + pt.x + ", " + pt.y + ", " + pt.z + ")"); // (4, 3, -1)

• in JavaScript, you can create a new object without creating a class
• you can add properties to any object even after it is created (z)

More about JavaScript object syntax
var person = {

name: "Philip J. Fry", // string

age: 23, // number

"weight": 172.5, // number

friends: ["Farnsworth", "Hermes", "Zoidberg"], // array

getBeloved: function() { return this.name + " loves Leela"; }

};

alert(person.age); // 23

alert(person["weight"]); // 172.5

alert(person.friends[2])); // Zoidberg

alert(person.getBeloved()); // Philip J. Fry loves Leela

• an object can have methods (function properties) that refer to itself as this
• can refer to the fields with .fieldName or ["fieldName"] syntax
• field names can optionally be put in quotes (e.g. weight above)

Repeated: Example XML data
<?xml version="1.0" encoding="UTF-8"?>

<note private="true">

<from>Alice Smith (alice@example.com)</from>

<to>Robert Jones (roberto@example.com)</to>

<to>Charles Dodd (cdodd@example.com)</to>

<subject>Tomorrow's "Birthday Bash" event!</subject>

<message language="english">

Hey guys, don't forget to call me this weekend!

</message>

</note> XML

• Could we express this message data as a JavaScript object?

• Each attribute and tag could become a property or sub-object within the overall
message object

The equivalant JSON data
{

"private": "true",

"from": "Alice Smith (alice@example.com)",

"to": [

"Robert Jones (roberto@example.com)",

"Charles Dodd (cdodd@example.com)"

],

"subject": "Tomorrow's \"Birthday Bash\" event!",

"message": {

"language": "english",

"text": "Hey guys, don't forget to call me this weekend!"

}

} JSON

Valid JSON
var student = { // no variable assignment

"first_name": 'Bart', // strings must be double-quoted

last_name: "Simpson", // property names must be quoted

"birthdate": new Date("April 1, 1983"), // Date objects not supported

"enroll": function() { // Functions not supported

this.enrolled = true;

}

}; JSON

• JSON has a few rules that differ from regular JS:
• Strings must be quoted (in JS, single- or double-quoted are allowed)
• All property/field names must be quoted
• Unsupported types: Function, Date, RegExp, Error
• All others supported: Number, String, Boolean, Array, Object, null

• Numerous validators/formatters available: JSONLint, JSON Formatter &
Validator, Free Formatter, JSON Validator

http://jsonlint.com/
http://jsonformatter.curiousconcept.com/
http://www.freeformatter.com/json-validator.html
http://paulisageek.com/json_validator/

Browser JSON methods
method description

JSON.parse(string) converts the given string of JSON data into an equivalent
JavaScript object and returns it

JSON.stringify(object) converts the given object into a string of JSON data (the
opposite of JSON.parse)

• you can use Ajax to fetch data that is in JSON format
• then call JSON.parse on it to convert it into an object
• then interact with that object as you would with any other JavaScript object

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/JSON/stringify

JSON expressions exercise
Given the JSON data at right, what
expressions would produce:
• The window's title? (use the

Console)
• The image's third coordinate?
• The number of messages?
• The y-offset of the last message?

var data = JSON.parse(this.responseText);

{

"window": {

"title": "Sample Widget",

"width": 500,

"height": 500

},

"image": {

"src": "images/logo.png",

"coords": [250, 150, 350, 400],

"alignment": "center"

},

"messages": [

{"text": "Save", "offset": [10, 20]},

{"text": "Help", "offset": [0, 50]},

{"text": "Quit", "offset": [30, 15]}

],

"debug": "true"

} JSON

var title = data.window.title;

var coord = data.image.coords[2];

var len = data.messages.length;

var y = data.messages[len - 1].offset[1];

JSON example: Books
Suppose we have a service books_json.php about library books.
• If no query parameters are passed, it outputs a list of book categories:

{ "categories": ["computers", "cooking", "finance", ...] } JSON

• Supply a category query parameter to see all books in one category:
http://webster.cs.washington.edu/books_json.php?category=cooking

{

"books": [

{"category": "cooking", "year": 2009, "price": 22.00,

"title": "Breakfast for Dinner", "author": "Amanda Camp"},

{"category": "cooking", "year": 2010, "price": 75.00,

"title": "21 Burgers for the 21st Century", "author": "Stuart Reges"},

...

]

} JSON

http://webster.cs.washington.edu/books_json.php
http://webster.cs.washington.edu/books_json.php?category=cooking

JSON exercise
Write a page that processes this JSON book data.
• Initially the page lets the user choose a category, created from the JSON data.

• After choosing a category, the list of books in it appears:

Books in category "Cooking":
 Breakfast for Dinner, by Amanda Camp (2009)
 21 Burgers for the 21st Century, by Stuart Reges (2010)
 The Four Food Groups of Chocolate, by Victoria Kirst (2005)

Working with JSON book data
function showBooks() {

// add all books from the JSON data to the page's bulleted list

var data = JSON.parse(this.responseText);

for (var i = 0; i < data.books.length; i++) {

var li = document.createElement("li");

li.innerHTML = data.books[i].title + ", by " +

data.books[i].author + " (" + data.books[i].year + ")";

document.getElementById("books").appendChild(li);

}

} JS

Bad style: the eval function
// var data = JSON.parse(this.responseText);

var data = eval(this.responseText); // don't do this!

... JS

• JavaScript includes an eval keyword that takes a string and runs it as code
• this is essentially the same as what JSON.parse does,
• but JSON.parse filters out potentially dangerous code; eval doesn't
• eval is evil and should not be used!

