

Functional and Object-Oriented Javascript
or

The Javascript Marty Doesn't Want You to Know
aka

How to make your
Javascript less
like this:

And more like this:

function init() {
var items = document.getQuerySelectorAll(".thing");
for(var i = 0; i < items.length; i++) {

items[i].addEventListener("click",clickthing);
}

}

function clickthing() {
this.innerHTML = "clicked";
this.style.color = "red";

}

window.onload = init;

$(function() {
$(".thing").click(function() {

$(this).text("clicked").css({"color":"red"});
});

});

What?
Functional Javascript with anonymous methods and methods-as-variables.

Objective Javascript with both Java-like and JSON notation.

Javascripts objects-as-hashes.

Why?
Most JS code out there won't look like Java code
(Will use at least some of the things listed above)

The big payoff: jQuery
(But jQuery won't make much sense without this!)

Functional Javascript
Functions are variables too!

function test() {
console.log(“test!”);

}

var test = function() {
console.log(“test!”);

}

is the same* as...

*actually there are a few minor differences involving the order the code is loaded, but don't mind me

Functions are variables too!
And what can we do with variables?

Functional Javascript
var test = function() {

console.log("test");
};

function caller(fn) {
fn();

}

caller(test);

What should this bit of code do?

Then - how do we get this work if test has a parameter?

What should this bit of code do?

Functional Javascript

function isEven(x) {
return x%2==0;

}

Given this, write a method removeEvens(a) that takes an
array (of numbers)
and returns a copy of the passed in array, removing all the
even elements. Then, generalize it to odds, or every third,
etc.

A more realistic example:

function removeEvens(a) {
var newa = [];
...
return newa;

}

Functional Javascript
A more realistic example:

function removef(a,f) {
var newa = [];
for(var i = 0; i < a.length; i++) {

if (!f(a[i])) {
newa.push(a[i]);

}
}
return newa;

}

function isEven(i) {
return i % 2 == 0;

}

removef([1,2,3,4,5],isEven); //removes all evens

What we just implemented here is filter, a basic operation in
functional programming. (Javascript arrays have this by
default, so we'll use that instead)

Functional Javascript
Array.filter

[1,2,3,4,5,6].filter(function(e){ return e%2==0});
//returns array of all evens in the array

[-1,2,-3,4,-5,6].filter(function(e){ return e > 0});
//returns array of all the positives in the array

[“abc”,”defg”,”hi”].filter(function(e){
return e.length == 2

});
//returns array of all strings of length 2

A few more to try:
Array of strings, remove all empty strings
Array of numbers, remove all contained in another array.

Functional Javascript
Array.map

[1,2,3,4].map(function(i){ return i+1; })
//returns [2,3,4,5]

["abc","bbbc","d"].map(function(i){ return i.length; })
//returns [3,4,1]

Another common functional operator is called map.
Think of this one as mapping between one array to another,
given a mapping function.

A few more to try:
Array of numbers, map to their char (String.fromCharCode(i))
Array of strings, filter out the empty's and map to first letter

Functional Javascript
Array.reduce

a.reduce(function(prev,cur){
return running_sum;

}, initial_value);

Another common functional operator is called reduce.
Think of it as combining all the elements of an array into one
item, given an accumulator function. The syntax is different:

[1,2,3,4,5].reduce(function(prev,cur) {
return prev+cur;

}, 0);
//returns sum of all elements in the array

["abc","bbbc","d"].reduce(function(prev,cur) {
return prev+cur;

}, "");
//what do you think this does?

Functional Javascript
Array.forEach

This one is pretty self explanatory.
(It's the foreach loop in javascript!)
It doesn't return anything.

[1,2,3].forEach(function(i) {
console.log(i);

});

Note about all these functions (except foreach):
They don't modify the array. Instead, they return a new array.

Why Functional Javascript?
It's shorter.
Functions have closure, loops don't.
(You can use this to write shorter and better* code)

<script>
window.onload = function() {

var btns = Array.prototype.slice.call(document.querySelectorAll(".btn"));
btns.forEach(function(btn){

var btnval = btn.innerHTML;
btn.addEventListener("click",function() {

console.log(btnval);
});

btn.innerHTML = "CLICK";
});

/*var btns = document.querySelectorAll(".btn");
for(var i = 0; i < btns.length; i++) {

var btn = btns[i];
var btnval = btn.innerHTML;
btn.addEventListener("click",function() {

console.log(btnval);
});

btn.innerHTML = "CLICK";
}*/

}
</script>

<button class="btn">5</button>
<button class="btn">4</button>
<button class="btn">7</button>

The for loop and the array.forEach will
behave differently for this html page.

*opinion

Object-Oriented Javascript
How do you make an object in java?
Object o = new Object();

How do you make an object in javascript?
The same way!

var o = new Object();

Object-Oriented Javascript
Did you know you could do this?

var o = new Object();
o.lolwut = 5;
console.log(o.lolwut);

What do you think this'll print?

Lesson:
Javascript objects can hold anything you store in them.

Object-Oriented Javascript
Did you know you could do this?

var o = new Object();
o["lolwut"] = 5;
console.log(o.lolwut);

What do you think this'll print?

Lesson:
o["name"] and o.name notation are almost* equivalent

*The almost comes from o["string with space"], can't do this the other way.

Object-Oriented Javascript
Another notation

var o = {lol:5, lolwut:"lolwut", lel:[1,2,3]};

Is equivalent to...

var o = new Object();
o.lol = 5;
o["lolwut"] = "lolwut";
o.lel = [1,2,3];

The former is commonly called “JSON” notation.

Object-Oriented Javascript
Methods and Fields

This is object-oriented programming, so where are my
methods and fields?

var o = new Object();
o.lolwut = 5;
o.test = function() {

console.log("test");
};

And now you can go...
o.lol();

But how do we access fields?

Object-Oriented Javascript
Methods and Fields

This is object-oriented programming, so where are my
methods and fields?

var o = new Object();
o.lolwut = 5;
o.test = function() {

console.log(this.lolwut);
};

And now you can go...
o.lol();

Example
Count and display the occurrences of every word of a textfield.

Hint: create a new object as your dictionary. Then, loop through
all the words (split the text on space). Increment the dictionary at
the word by 1.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

