CSE143X Section #3 Problems

For problems 1-3, you are writing a method for the ArrayIntlList class:

public class ArrayIntList {
private int[] elementData;
private int size;

<methods>
}

Unless otherwise noted, assume that you may not call any other methods of the
class in solving the problem.

1.

Write a method isPairwiseSorted that returns whether or not a list of
integers is pairwise sorted (true if it is, false otherwise). A list is
considered pairwise sorted if each successive pair of numbers is in sorted
(non-decreasing) order. For example, if a variable called list stores the
following sequence of values:

(3, 8, 2, 5, 19, 24, -3, 0, 4, 4, 8, 205, 42]
then the following call:

list.isPairwiseSorted ()
should return the value true because the successive pairs of this list are
all sorted: (3, 8), (2, 5), (19, 24), (-3, 0), (4, 4), (8, 205). Notice

that the extra value 42 at the end had no effect on the result because it is
not part of a pair. If the list had instead stored the following:

(L, 9, 3, 17, 4, 28, -5, -3, 0, 42, 308, 409, 19, 17, 2, 4]
then the method should return the value false because the pair [19, 17] is
not in sorted order. If a list is so short that it has no pairs, then it is
considered to be pairwise sorted.
Write a method called mirror that doubles the size of a list of integers by
appending the mirror image of the original sequence to the end of the list.

The mirror image is the same sequence of values in reverse order. For
example, if a variable called list stores this sequence of values:

and we make the following call:
list.mirror () ;
then it should store the following values after the call:
(r, 3, 2, 7, 7, 2, 3, 1]
Notice that it has been doubled in size by having the original sequence
appearing in reverse order at the end of the list. You may not make

assumptions about how many elements are in the list although you may assume
that the array has sufficient capacity to store the new list.

3. Write a method called fromCounts that converts an ArrayIntList of counts
into a new ArrayIntList of values that the method returns. Assume that the
ArrayIntList that is called stores a sequence of integer pairs that each
indicate a count and a number. For example, suppose that an ArrayIntList
called list stores the following sequence of values:

This sequence of pairs indicates that you have 5 occurrences of 2, followed
by two occurrences of -5, followed by 4 occurrences of 3, and so on. If we
make the following call:

ArrayIntList list2 = list.fromCounts();
Then the variable 1list2 should store the following sequence of values:
(2, 2, 2, 2, 2, -5, -5, 3, 3, 3, 3, 4, 4, 1, 0, 17, 17]

Assume that the ArrayIntList that is called stores a legal sequence of pairs
(which means it will always have an even size) and that the default
constructor for ArrayIntList will construct an array of sufficient capacity
to store the result. Your method should not change the original list. TIf
the sequence of pairs is empty, the result should be an empty list.

4. Below is a "bad" version of the ArrayIntList. It has mostly the same
functionality as the version discussed in lecture, but it has poor style.
Approximately half of the points for each programming assignment in this
class will be devoted to style issues, so it is important to understand
style issues. What is bad about this version?

// Stuart Reges (my name is Elroy Jetson)
// This is the ArrayIntList class.

import java.util.*;

public class ArrayIntList {

int[] elementData; // element data
int size; // size
int capacity; // capacity

public static int defaultCapacity = 100;

public ArrayIntList () {
elementData = new int[100];
size = 0;
capacity = 100;

}

// capacity should be not be negative
public ArrayIntList (int capacity) {
if (capacity < 0) {
throw new IllegalArgumentException();

} else {
elementData = new int[capacityl;
size = 0;

this.capacity = capacity;

public int size () {
return size;

}

// pre : 0 <= index < size () (throws exception if not)
public int get (int index) {
if (index < 0 || index >= size) {
throw new IndexOutOfBoundsException();
}
for (int 1 = 0; 1 < size; i++) {
if (i == index) {
return elementDatali];
}
}

return 0;

}

public String toString() {

if (size==0) {
return" []1";
} else {
String result="["+elementDatal[0];
for(int i=1;i<size;i++) {
result+=", "+elementDatal[i];

}

return result+"]";

}

// uses a for loop to find out if the array has the given value
public boolean contains (int value) {
int count = 0;
for (int i = size - 1; 1 >= 0; i--) {
if (elementData[i] == value) {
count++;
}
}
if (count == 0) {
return false;
} else {
return true;
}
}

// returns the position of the given value in the array, only checking up
// to the current size
public int indexOf (int value) {

int index = 0;

for (int i = size - 1; 1 >= 0; i--) {
if (elementDatal[i] == wvalue) {

index = 1i;

}

}

if (elementData[index] == wvalue) {
return index;

} else {

return -1;

}

// pre : size() < capacity (throws IllegalStateException if not)
// post: appends the value to the end of the list
public void add(int wvalue) {

if (size > capacity - 1) {

throw new IllegalStateException();

}

elementDatal[size] = value;

sizet+;

}

// pre : size() < capacity (throws IllegalStateException if not) &&
// 0 <= index <= size() (throws IndexOutOfBoundsException if not)
// post: inserts the value at the index
public void add(int index, int value) {
for (int 1 = size; 1 >= index; 1i--) {
if (index < 0 || index > size) {
throw new IndexOutOfBoundsException();
} else if (size > capacity - 1) {
throw new IllegalStateException();
} else if (i > index) {

elementData[i] = elementDatal[i - 1];
} else {

elementDatal[i] = wvalue;

size++;

}

// post: returns the capacity of the list
public int capacity () {
return capacity;

}

// pre : 0 <= index < size () (throws IndexOutOfBoundsException if not)
// post: removes value at the index and decreases the size by 1
public void remove (int index) {
if (index < 0 || index >= size) {
throw new IndexOutOfBoundsException() ;

}

for (int i = index; 1 < size - 1; i++) {
elementDatal[i] = elementDatali + 1];

}

size--;

}

// appends values to the end of the list
public void addAll (ArrayIntList other) {

int[] data = Arrays.copyOf (elementData, size + other.size);
while (other.size() > 0) {
data[size++] = other.elementDatal[0];

other.remove (0) ;

}

elementData = data;

