
 CSE143X Section #16 Problems

For this section, we will write methods that look for combinations of strings

that constitute words. We will use a class called Dictionary with the

following public methods:

 Dictionary() constructs a Dictionary from a dictionary file

 contains(word) returns whether the given word is in the dictionary

 containsPrefix(prefix) returns whether the dictionary has at least one

 word that begins with the given prefix

 size() returns the number of words in the dictionary

 wordList() returns a view of the words as a List<String>

We will use only the contains and containsPrefix methods in the code we write.

In addition to the dictionary, we will work with a list of strings that we will

use to try to build up words. As an example, we will consider using the

2-letter state abbreviations used by the postal service. These abbreviations

can sometimes be combined to form words. For example, the state abbreviations

for AL, MO, and ND can be combined to form the word ALMOND.

1. Write a recursive method called printJumbles that takes a Dictionary, a list

 of strings, and the number of strings to combine and that prints out all

 combinations with that number of strings that are in the dictionary:

 public static void printJumbles(Dictionary words, List<String> options,

 int choices) {

 ...

 }

 For example, if passed the 50 state abbreviations as the options and 3 as

 the number of choices, it should print the following combinations:

 ALMOND, ARCADE, ARCANE, CANDID, DECADE, DECODE, DEMAND, DEMODE, DERIDE,

 FLORAL, FLORID, FLORIN, INCOME, INLAID, INLAND, INVADE, LASCAR, MESCAL,

 MARINE, NECTAR, ORDEAL, SCALAR, SCORIA, VANDAL

2. Write a variation of the previous method called printJumbles2 that takes

 just the dictionary and the list of strings to combine and that finds all

 combinations of the strings of any length. This will require recognizing

 when a particular combination is a dead-end. For example, there are words

 in the dictionary that begin with the state abbreviation AL, but there are

 no words in the dictionary that begin with the state abbreviation AK.

 To solve this version, you should use the containsPrefix method of the

 Dictionary to see if a combination of strings has any chance of generating a

 word. As with the 8 queens solution, your recursive exploration method

 should have a precondition that this is not a dead end. In particular, you

 should guarantee that any string passed to the method is a prefix of at

 least one word in the dictionary.

 Using this approach, you should print the following words:

 ALGA, ALIA, ALMA, ALMOND, AKIN, ARCADE, ARCANE, ARID, CACA, CALAMINE,

 CAME, CANE, CANDID, COAL, COCA, COCO, CODE, COIL, COIN, COLA, COME,

 COMA, CONE, CONY, COOK, DEAL, DEAR, DECADE, DECODE, DEMAND, DEMO,

 DEMODE, DENY, DERIDE, DEWY, FLAK, FLORAL, FLORID, FLORIN, GAGA, GAIN,

 GALA, GAME, HIDE, HIND, INCOME, INLAID, INLAND, INVADE, LAID, LAIN,

 LAME, LANE, LAND, LASCAR, LAVA, MEAL, MELAMINE, MEMO, MEMORIAL, MEND,

 MESCAL, MADE, MAID, MAIL, MAIN, MAINLAND, MALARIAL, MAMA, MANE, MANY,

 MANDARIN, MARINE, MICA, MILA, MINE, MIND, MODE, MOOR, NEAR, NECTAR,

 ORAL, ORDEAL, PACT, PAID, PAIL, PAIN, PANE, PAPA, RIDE, RIME, SCALAR,

 SCAR, SCORIA, VADE, VAIN, VANE, VANDAL, WADE, WAIL, WANE, WAND, WIDE,

 WINE, WINY, WIND

3. Write a third version of the method called printJumbles3 that takes the same

 parameters as printJumbles2 but that doesn't allow any given string to be

 repeated in the result. For the state abbreviations, the following

 solutions should be rejected because they require using a state abbreviation

 more than once:

 CACA, COCO, DECADE, DECODE, DEMODE, DERIDE, GAGA, MAMA, PAPA

 To solve this version, include an extra parameter for your recursive

 exploration method that has a set of strings that have been used so far.

 With that extra information, you can guarantee that no string is used more

 than once for any given string you build up.

