
 CSE143X Section #13 Problems 2

1. Recursive Tracing, 15 points. Consider the following method:

 public void mystery(int n) {

 System.out.print(n % 10);

 if (n >= 3) {

 mystery(n / 2);

 }

 if (n % 2 == 0) {

 System.out.print("+");

 } else {

 System.out.print("-");

 }

 }

 For each call below, indicate what output is produced:

 Method Call Output Produced

 mystery(2); _____________________________________

 mystery(5); ______________________________________

 mystery(7); ______________________________________

 mystery(18); ______________________________________

 mystery(21); ______________________________________

2. Recursive Programming, 15 points. Write a recursive method called undouble

 that takes a string as a parameter and that returns a new string obtained by

 replacing every pair of repeated adjacent letters with one of that letter.

 For example, the String "bookkeeper" has three repeated adjacent letters

 ("oo", "kk", and "ee"), so undouble("bookkeeper") should return the string

 "bokeper". Below are more sample calls:

 Method Value Method Value

 Call Returned Call Returned

 --------------------------------- ---------------------------------

 undouble("odegaard") "odegard" undouble("oops") "ops"

 undouble("baz") "baz" undouble("foobar") "fobar"

 undouble("mississippi") "misisipi" undouble("apple") "aple"

 undouble("carry") "cary" undouble("berry") "bery"

 undouble("juggle") "jugle" undouble("theses") "theses"

 undouble("little") "litle" undouble("") ""

 You may assume that the string is composed entirely of lowercase letters, as

 in the examples above, and that no letter appears more than two times in a

 row. Notice that the method might be passed an empty string, in which case

 it returns an empty string. You are not allowed to construct any structured

 objects to solve this problem other than strings (no array, ArrayList,

 StringBuilder, Scanner, etc) and you may not use a while loop, for loop or

 do/while loop to solve this problem; you must use recursion. You may use

 only the string methods included on the cheat sheet.

3. Details of inheritance, 20 points. Assuming that the following classes have

 been defined:

 public class Cup extends Box {

 public void method1() {

 System.out.println("Cup 1");

 }

 public void method2() {

 System.out.println("Cup 2");

 super.method2();

 }

 }

 public class Pill {

 public void method2() {

 System.out.println("Pill 2");

 }

 }

 public class Jar extends Box {

 public void method1() {

 System.out.println("Jar 1");

 }

 public void method2() {

 System.out.println("Jar 2");

 }

 }

 public class Box extends Pill {

 public void method2() {

 System.out.println("Box 2");

 }

 public void method3() {

 method2();

 System.out.println("Box 3");

 }

 }

And assuming the following variables have been defined:

 Box var1 = new Box();

 Pill var2 = new Jar();

 Box var3 = new Cup();

 Box var4 = new Jar();

 Object var5 = new Box();

 Pill var6 = new Pill();

In the table below, indicate in the right-hand column the output produced by

the statement in the left-hand column. If the statement produces more than one

line of output, indicate the line breaks with slashes as in "a/b/c" to indicate

three lines of output with "a" followed by "b" followed by "c". If the

statement causes an error, fill in the right-hand column with either the phrase

"compiler error" or "runtime error" to indicate when the error would be

detected.

 Statement Output

 --

 var1.method2(); ____________________________

 var2.method2(); ____________________________

 var3.method2(); ____________________________

 var4.method2(); ____________________________

 var5.method2(); ____________________________

 var6.method2(); ____________________________

 var1.method3(); ____________________________

 var2.method3(); ____________________________

 var3.method3(); ____________________________

 var4.method3(); ____________________________

 ((Cup)var1).method1(); ____________________________

 ((Jar)var2).method1(); ____________________________

 ((Cup)var3).method1(); ____________________________

 ((Cup)var4).method1(); ____________________________

 ((Jar)var4).method2(); ____________________________

 ((Box)var5).method2(); ____________________________

 ((Pill)var5).method3(); ____________________________

 ((Jar)var2).method3(); ____________________________

 ((Cup)var3).method3(); ____________________________

 ((Cup)var5).method3(); ____________________________

4. Linked Lists, 15 points. Fill in the "code" column in the following table

 providing a solution that will turn the "before" picture into the "after"

 picture by modifying links between the nodes shown. You are not allowed to

 change any existing node's data field value and you are not allowed to

 construct any new nodes, but you are allowed to declare and use variables of

 type ListNode (often called "temp" variables). You are limited to at most

 two variables of type ListNode for each of the four subproblems below.

 You are writing code for the ListNode class discussed in lecture:

 public class ListNode {

 public int data; // data stored in this node

 public ListNode next; // link to next node in the list

 <constructors>

 }

 As in the lecture examples, all lists are terminated by null and the

 variables p and q have the value null when they do not point to anything.

 before after code

-----------------------+-----------------------+-------------------------------

 p->[1]->[2] | p->[1]->[2]->[3] |

 | |

 | |

 q->[3] | q |

 | |

-----------------------+-----------------------+-------------------------------

 | |

 | |

 p->[1] | p->[2]->[1] |

 | |

 | |

 q->[2]->[3] | q->[3] |

 | |

-----------------------+-----------------------+-------------------------------

 | |

 | |

 p->[1]->[2] | p->[2]->[4] |

 | |

 | |

 q->[3]->[4] | q->[1]->[3] |

 | |

 | |

 | |

 | |

-----------------------+-----------------------+-------------------------------

 | |

 | |

 p->[1] | p->[2]->[1]->[4] |

 | |

 | |

 q->[2]->[3]->[4]->[5] | q->[5]->[3] |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

-----------------------+-----------------------+-------------------------------

5. Array Programming, 10 points. Write a method called removeMax that removes

 the largest value from a list of integers. For example, if a variable

 called list stores this sequence of values:

 [3, 1, 5, 7, 3, 19, 42, 8, 23, 7, 42, 2, -8, 9, 105, -3]

 |

 max

 and the following call is made:

 list.removeMax();

 Then the largest value (105) is removed, leaving this list:

 [3, 1, 5, 7, 3, 19, 42, 8, 23, 7, 42, 2, -8, 9, -3]

 |

 max

 If the maximum occurs more than once, the method should remove the first

 occurrence. For example, if the same call is made again, the list becomes:

 [3, 1, 5, 7, 3, 19, 8, 23, 7, 42, 2, -8, 9, -3]

 You are writing a method for the ArrayIntList class discussed in lecture:

 public class ArrayIntList {

 private int[] elementData; // list of integers

 private int size; // current # of elements in the list

 <methods>

 }

 The method should throw an IllegalStateException if the list is empty

 because then there would be no maximum value to remove.

 You may not call any other methods of the ArrayIntList class to solve this

 problem, you are not allowed to define any auxiliary data structures (no

 array, String, ArrayList, etc), and your solution must run in O(n) time

 where n is the length of the original list.

6. Stacks/Queues, 25 points. Write a method called makePalindrome that takes a

 stack of integers as a parameter and that removes pairs of values in mirror

 positions that don't match, resulting in a sequence of values that is a

 palindrome. A palindrome is a sequence of values that is the same in

 backwards order as it is in forwards order. For example, suppose that a

 stack s stores the following values:

 bottom [8, 12, 5, 3, 3, 6, 12, 7] top

 ^ ^ ^ ^ ^ ^ ^ ^

 | | | +--+ | | |

 | | +--------+ | |

 | +---------------+ |

 +----------------------+

 mirror positions

 Suppose that we make the following call:

 makePalindrome(s);

 Notice that the first and last value are considered to be in mirror

 positions and they don't match (8 versus 7), so that pair will be removed.

 The second and second-to-last values are in mirror positions and they match

 (both 12), so they will not be removed. The third and third-to-last are in

 mirror positions and they don't match (5 versus 6), so that pair will be

 removed. The innermost pair matches (both 3), so it won't be removed.

 Thus, the stack ends up storing the two pairs that match:

 bottom [12, 3, 3, 12] top

 If the stack has an odd length, then the middle value should be retained

 because it can be part of a palindrome. For example, if the stack stored

 these values initially:

 bottom [1, 2, 3, 4, 3, 7, 1] top

 ^ ^ ^ ^ ^ ^

 | | +-----+ | |

 | +-----------+ |

 +-----------------+

 mirror positions

 Then after the call, the stack should store the following values:

 bottom [1, 3, 4, 3, 1] top

 Notice that the middle value of 4 has been retained along with the two

 mirror pairs that match.

 You are to use one queue as auxiliary storage to solve this problem. You

 may not use any other auxiliary data structures to solve this problem,

 although you can have as many simple variables as you like. You also may

 not solve the problem recursively. Your solution must run in O(n) time

 where n is the size of the stack. Use the Stack and Queue structures

 described in the cheat sheet and obey the restrictions described there

 (recall that you can't use the peek method or a foreach loop or iterator).

