
handout #4 

CSE143X—Computer Programming II & III 

Programming Assignment #3 

due: Friday, 10/18/24, 11 pm 

In this programming assignment you will practice using arrays and classes.  You are to implement a class called 

LetterInventory that can be used to keep track of an inventory of letters of the alphabet.  The constructor for the 

class takes a String and computes how many of each letter are in the String.  This is the information the object 

keeps track of (how many a’s, how many b’s, etc).  It ignores the case of the letters and ignores anything that is 

not an alphabetic character (e.g., it ignores punctuation characters, digits and anything else that is not a letter). 

Your class should have the following public methods. 

Method Description 

LetterInventory(String data) Constructs an inventory (a count) of the alphabetic letters in the given string, 

ignoring the case of letters and ignoring any non-alphabetic characters. 

int get(char letter) Returns a count of how many of this letter are in the inventory.  Letter might 

be lowercase or uppercase (your method shouldn’t care).  If a nonalphabetic 

character is passed, your method should throw an IllegalArgumentException. 

void set(char letter, int value) Sets the count for the given letter to the given value.  Letter might be 

lowercase or uppercase.  If a nonalphabetic character is passed or if value is 

negative, your method should throw an IllegalArgumentException 

int size() Returns the sum of all of the counts in this inventory.  This operation should 

be “fast” in that it should store the size rather than having to compute it each 

time this method is called. 

boolean isEmpty() Returns true if this inventory is empty (all counts are 0).  This operation 

should be fast in that it should not need to examine each of the 26 counts 

when it is called. 

String toString() Returns a String representation of the inventory with the letters all in 

lowercase and in sorted order and surrounded by square brackets.  The 

number of occurrences of each letter should match its count in the inventory.  

For example, an inventory of 4 a’s, 1 b, 1 l and 1 m would be represented as 

“[aaaablm]”. 

LetterInventory 

add(LetterInventory other) 

Constructs and returns a new LetterInventory object that represents the sum 

of this letter inventory and the other given LetterInventory.  The counts for 

each letter should be added together.  The two LetterInventory objects being 

added together (this and other) should not be changed by this method 

LetterInventory 

subtract(LetterInventory 

other) 

Constructs and returns a new LetterInventory object that represents the result 

of subtracting the other inventory from this inventory (i.e., subtracting the 

counts in the other inventory from this object’s counts).  If any resulting 

count would be negative, your method should return null.  The two 

LetterInventory objects being subtracted (this and other) should not be 

changed by this method 



Below is an example of how the add method would be called. 

LetterInventory inventory1 = new LetterInventory("George W. Bush"); 

LetterInventory inventory2 = new LetterInventory("Hillary Clinton"); 

LetterInventory sum = inventory1.add(inventory2); 

The first inventory would correspond to [beegghorsuw], the second would correspond to [achiilllnnorty] and the 

third would correspond to [abceegghhiilllnnoorrstuwy]. 

You should implement this class with an array of 26 counters (one for each letter) along with any other data 

fields you find that you need.  Remember, though, that we want to minimize the number of data fields when 

possible.  You might be tempted to implement the add method by calling the toString method but you are not 

allowed to use that approach because it would be inefficient for inventories with large character counts.  You 

should introduce a public class constant for the value 26 to add to readability. 

You will need to know certain things about the properties of letters and type char.  There is a section about type 

char in chapter 4 of the textbook.  One of the most important ideas is that the values of type char have 

corresponding integer values.  There is a character with value 0, a character with value 1, a character with value 

2 and so on.  You can compare different values of type char using less-than and greater-than tests, as in: 

if (ch >= 'a') { 

    ... 

} 

All of the lowercase letters appear grouped together in type char ('a' is followed by 'b' followed by 'c', and so on) 

and all of the uppercase letters appear grouped together in type char ('A' followed by 'B' followed by 'C' and so 

on).  Because of this, you can compute a letter’s displacement (or distance) from the letter 'a' with an expression 

like the following (this expression assumes the variable letter is of type char and stores a lowercase letter): 

letter - 'a' 

Going in the other direction, if you know a character’s integer equivalent, you can cast the result to char to get 

the character.  For example, suppose that you want to get the letter that is 8 away from 'a'.  You could say: 

char result = (char) ('a' + 8); 

This assigns the variable result the value 'i'. 

As in these examples, you should write your code in terms of displacement from a fixed letter like 'a' rather than 

including the specific integer value of a character like 'a'. 

You probably want to look at the String and Character classes for useful methods (e.g., there is a toLowerCase 

method in each).  You will have to pay attention to whether a method is static or not.  The String methods are 

mostly instance methods because Strings are objects.  The Character methods are all static because char is a 

primitive type.  For example, assuming you have a variable called s that is a String, you can turn it to lowercase 

by saying: 

s = s.toLowerCase(); 

This is a call on an instance method where you put the name of the object first.  But char values are not objects 

and the toLowerCase method in the Character class is a static method.  So assuming you have a variable called 

ch that is of type char, you'd turn it to lowercase by saying: 

ch = Character.toLowerCase(ch); 



You can read about String operations on pages 166—173 of the textbook.  Remember that some String 

operations are forbidden (see the “general style deductions” on the course web page) including the repeat 

method. 

In terms of correctness, your class must provide all of the functionality described above and must satisfy all of 

the constraints mentioned in this writeup.  In terms of style, we will be grading on your use of comments, good 

variable names, consistent indentation, minimal data fields and good coding style to implement these 

operations. 

The ArrayIntList class discussed in lecture provides a good example of the kind of documentation we expect 

you to include.  You do not have to use the pre/post format, but you must include the equivalent information, 

including exactly what type of exception is thrown if a precondition is violated.  Remember to mention all 

important behavior that a client would want to know about. 

You should name your file LetterInventory.java and you should turn it in electronically in Ed (there will be a 

link from the “Homework” tab on the class web page). 

Development Strategy 
One of the most important techniques for software professionals is to develop code in stages rather than trying 

to write it all at once (the technical term is iterative enhancement or stepwise refinement).  It is also important to 

be able to test the correctness of your solution at each different stage. 

We have noticed that many 143 students do not develop their code in stages and do not have a good idea of how 

to test their solutions.  As a result, for this assignment we will provide you with a development strategy and 

some testing code.  We aren’t going to provide exhaustive testing code, but we’ll give you some good examples 

of the kind of testing code we want you to write. 

We are suggesting that you develop the program in three stages: 

1. In this stage we want to test constructing a LetterInventory and examining it’s contents.  So the methods 

we will implement are the constructor, the size method, the isEmpty method, the get method, and the 

toString method.  Even within this stage you can develop the methods slowly.  First do the constructor 

and size methods.  Then add the isEmpty method.  Then add the get method.  Then add the toString 

method.  The testing program will test them in this order, so it will be possible to implement them one at 

a time. 

2. It this stage we want to add the set method to the class that allows the client to change the number of 

occurrences of an individual letter.  The testing program will verify that other methods work properly in 

conjunction with set (the get, isEmpty, size, and toString methods). 

3. In this stage we want to include the add and subtract methods.  You should write the add method first 

and make sure it works.  The testing program first tests add, so don’t worry that the fact that the tests on 

subtract fail initially. 

We will be providing testing code for each of these three stages and for this program only you are allowed to 

discuss how to write testing code with other students.  Keep in mind that the tests are not guaranteed to be 

exhaustive.  They are meant to be examples of the kinds of tests you should perform. 


