CSE 143X Section Handout \#2 Problems

Parameter Mystery

1. ('ParameterMystery1'). What output is produced by the following program?
```
public class ParameterMystery1 {
    public static void main(String[] args) {
        int a = 4;
        int b = 7;
        int c = -2;
        mystery(a, b, c);
        mystery(c, 3, a);
        mystery(a + b, b + c, c + a);
}
    public static void mystery(int c, int a, int b) {
        System.out.println(b + " + " + c + " = " + a);
    }
}
```

2. ('ParameterMystery2'). What output is produced by the following program?
```
public class ParameterMystery2 {
    public static void main(String[] args) {
        String major = "fred";
        String fred = "computer";
        String computer = "department";
        String department = "student";
        String student = "major";
        sentence(major, fred, department);
        sentence(student, computer, fred);
        sentence("fred", "honor", computer);
        sentence("foo", "bar", "baz");
    }
    public static void sentence(String major, String fred, String foo) {
        System.out.println("Many a " + foo + " in the " + fred + " of " + major);
    }
}
```

3. ('ParameterMystery3'). What output is produced by the following program?
```
public class ParameterMystery3 {
    public static void main(String[] args) {
        String farm = "here";
        String old = "macdonald";
        String macdonald = "there";
        String everywhere = "farm";
        String here = "everywhere";
        String there = "old";
    String quack = "duck";
    mystery(macdonald, there, "everywhere");
    mystery(old, macdonald, farm);
    mystery("quack", here, "there");
    mystery(quack, "here", "farm");
    mystery(old, everywhere, there);
    }
    public static void mystery(String macdonald, String farm, String old) {
    System.out.println(old + " " + macdonald + " had a " + farm);
    }
}

\section*{CSE 143X Section Handout \#2} Problems (continued)

\section*{Graphics and DrawingPanel}
(Supp. 3G self-checks 1-4, exercises 1-9)
4. a) Exercise 3G.5, p219 ('SquaresA'). Generate the output shown using the DrawingPanel class.
- window size: 300x200
- background color: cyan;
- position: \((\mathbf{5 0}, \mathbf{5 0})\);
rectangle color: red; size: \(\mathbf{1 0 0} \mathbf{~ p x}\);
diagonal line color: black
spacing between red lines: \(\mathbf{2 0} \mathbf{~ p x}\)
b) Exercise 3G.6, p220 ('SquaresB"). Parameterize your program so that the figure can be drawn at different positions. Change the window size to \(\mathbf{4 0 0 \times 3 0 0}\). The first figure is still at its original position of \((50,50)\). The two additional figures should appear at \((\mathbf{2 5 0}, \mathbf{1 0})\) and \((\mathbf{1 8 0}, \mathbf{1 1 5})\).
c) Exercise 3G.6, p220 ('SquaresC'). Further parameterize your program to have the sizes shown below. The top-right figure has size 50, and the bottom-right figure has size \(\mathbf{1 8 0}\).

5. Exercise 3G.8, p221 ("Triangle"). Using DrawingPanel, write a Java program that produces this figure:

- size: 600x200
- background color: yellow
- line color: blue
- vertical spacing between lines: \(\mathbf{1 0} \mathbf{~ p x}\)

The diagonal lines connect at the bottom in the middle.```

