
 

                          CSE143X Section #11 Problems 

 

For each of these problems, you may NOT use a while loop, for loop or do/while 

loop to solve the problem; you MUST use recursion.  Unless otherwise noted, you 

are not allowed to construct any structured objects (no array, ArrayList, 

Stack, Queue, String, StringBuilder, etc). 

 

1. Write a method factorial that takes an integer n as a parameter and that 

   uses recursion to compute the value of n factorial (also known as n!). 

        n! = 1 * 2 * 3 ... * n 

 

   By definition, 0! is 1.  The method should throw an IllegalArgumentException 

   if passed a negative value. 

 

2. Write a method called parenthesize that takes a String and an integer n as 

   parameters and that prints the string inside n sets of parentheses.  For 

   example, this code: 

 

        parenthesize("Joe", 2); 

        System.out.println();  // to complete line of output 

        parenthesize("The University of Washington", 6); 

        System.out.println();  // to complete line of output 

        parenthesize("midterm", 1); 

        System.out.println();  // to complete line of output 

 

   should produce these 3 lines of output: 

 

        ((Joe)) 

        ((((((The University of Washington)))))) 

        (midterm) 

 

   Your method should throw an IllegalArgumentException if passed a negative 

   number.  It could be passed 0, as in: 

 

        parenthesize("CS143X, Autumn 2023, 0); 

        System.out.println();  // to complete line of output 

 

   In this case the output would have no (i.e., 0) parentheses: 

 

        CS143, Autumn 2023 

 

3. Write a method starString that takes an integer n as a parameter and that 

   returns a string of stars (asterisks) 2^n long (i.e., 2 to the nth power). 

   For example: 

 

        starString(0) should return "*" (because 2^0 == 1) 

        starString(1) should return "**" (because 2^1 == 2) 

        starString(2) should return "****" (because 2^2 == 4) 

        starString(3) should return "********" (because 2^3 == 8) 

        starString(4) should return "****************" (because 2^4 == 16) 

 

   Your method should take a single integer parameter that specifies the power 

   of 2.  The method should throw an IllegalArgumentException if passed a 

   value less than 0. 



 

4. Write a method writeNums that takes an integer n as a parameter and that 

   writes the first n integers starting with 1 to System.out in sequential 

   order separated by commas.  For example, the following calls: 

 

        writeNums(5); 

        System.out.println(); // to complete the line of output 

        writeNums(12); 

        System.out.println(); // to complete the line of output 

 

   should produce the output: 

 

        1, 2, 3, 4, 5 

        1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

 

   You must exactly reproduce the format of the examples above.  Your method 

   should throw an IllegalArgumentException if passed a value less than 1. 

 

5. Write a method writeChars that takes an integer n as a parameter and that 

   writes out n characters as follows.  The middle character of the output 

   should always be an asterisk ("*").  If you are asked to write out an even 

   number of characters, then there will be two asterisks in the middle. 

   Before the asterisk(s) you should write out less-than characters ("<"). 

   After the asterisk(s) you should write out greater-than characters (">"). 

   You should write all of the characters on a single line of output. 

 

   For example, the following calls: 

 

        writeChars(5); 

        System.out.println(); // to complete the line of output 

        writeChars(8); 

        System.out.println(); // to complete the line of output 

 

   Would produce the following output: 

 

        <<*>> 

        <<<**>>> 

 

   If your method is passed 1 or 2 as an argument, it should write out just 

   asterisks.  Your method should throw an IllegalArgumentException if passed a 

   value less than 1. 

 

6. Write a method printTwos that takes an integer n as a parameter and that 

   prints an expression composed of a single odd number multiplied by twos that 

   is equal to n.  The twos should surround the odd number with an equal number 

   of twos on either side if possible.  For example, the call: 

 

        printTwos(80); 

 

   should produce the following output: 

 

        2 * 2 * 5 * 2 * 2 

 

   If the expression has an odd number of twos, then the "extra" two should 

   appear at the front of the expression.  For example, the call: 

 

        printTwos(96); 

 

   should produce the following output: 

 

        2 * 2 * 2 * 3 * 2 * 2 



 

   If the number is odd to begin with, it should simply be printed.  It is 

   possible that the odd number to print will be 1.  For example, the following 

   calls: 

 

        printTwos(1); 

        System.out.println(); // to complete the line of output 

        printTwos(2); 

        System.out.println(); // to complete the line of output 

        printTwos(32); 

        System.out.println(); // to complete the line of output 

         

   should produce the following output: 

 

        1 

        2 * 1 

        2 * 2 * 2 * 1 * 2 * 2 

 

   You must exactly reproduce the format of the examples above.  Your method 

   should throw an IllegalArgumentException if passed a value less than 1. 

 

7. Write a method stutter that takes a stack containing a list of integers and 

   that replaces every value in the stack with 2 of that value.  For example, 

   suppose a stack stores these values: 

 

        bottom [3, 7, 1, 14, 9] top 

 

   Then the stack should store these values after the method terminates: 

 

        bottom [3, 3, 7, 7, 1, 1, 14, 14, 9, 9] top 

 

   Notice that you must preserve the original order.  In the original list the 

   9 was at the top and would have been popped first.  In the new stack the two 

   9's would be the first values popped from the stack.  Your method should 

   take a single parameter of type Stack<Integer>. 

 

8. Write a method writeSquares that takes an integer n as a parameter and that 

   writes the first n squares to System.out separated by commas with the odd 

   squares in descending order followed by the even squares in ascending order. 

   For example, the call: 

 

        writeSquares(5); 

 

   should produce the following output: 

 

        25, 9, 1, 4, 16 

 

   The odd squares (25, 9, and 1) appear first in descending order followed by 

   the even squares (4 and 16) in ascending order.  Notice that commas are used 

   to separate consecutive values in the list.  Your method should send its 

   output to System.out and should not call println.  For example, the 

   following calls: 

 

        writeSquares(5); 

        System.out.println();  // to complete the line of output 

        writeSquares(1); 

        System.out.println();  // to complete the line of output 

        writeSquares(8); 

        System.out.println();  // to complete the line of output 



 

   should produce exactly three lines of output: 

 

        25, 9, 1, 4, 16 

        1 

        49, 25, 9, 1, 4, 16, 36, 64 

 

   You must exactly reproduce the format of these examples.  Your method 

   should throw an IllegalArgumentException if passed a value less than 1. 

 

9. Write a method called substring that takes as parameters a string, a start 

    index, and an ending index, and that returns a specified substring of the 

    string.  You are implementing a recursive alternative to the standard 

    substring method.  As with the standard substring method, your method 

    should return the substring that begins at the start index and that extends 

    to the character just before the ending index.  For example: 

 

        substring("hello", 0, 2) should return "he" 

        substring("hamburger", 4, 8) should return "urge" 

        substring("smiles", 1, 5) should return "mile" 

        substring("howdy", 3, 3) should return "" 

 

    The method should throw an IllegalArgumentException if the start index is 

    negative or if the ending index is greater than the length of the string or 

    if the start index is greater than the ending index.  The method should 

    return an empty string if the two indexes are equal.  In implementing this 

    method, you are restricted to the following string methods: 

 

        charAt(index)     returns the character at the given index 

        equals(other)     returns whether this String is equal to the other 

        length()          returns the length of the String 

 

      You are not allowed to construct any structured objects other than 

      Strings (no array, StringBuilder, Scanner, etc). 

 

10. Write a method writeSequence that takes an integer n as a parameter and 

    that writes to System.out a symmetric sequence of n numbers with descending 

    integers ending in 1 followed by ascending integers beginning with 1, as in 

    the table below: 

 

        Method Call               Output Produced 

        ------------------------------------------- 

        writeSequence(1);       1 

        writeSequence(2);       1 1 

        writeSequence(3);       2 1 2 

        writeSequence(4);       2 1 1 2 

        writeSequence(5);       3 2 1 2 3 

        writeSequence(6);       3 2 1 1 2 3 

        writeSequence(7);       4 3 2 1 2 3 4 

        writeSequence(8);       4 3 2 1 1 2 3 4 

        writeSequence(9);       5 4 3 2 1 2 3 4 5 

        writeSequence(10);      5 4 3 2 1 1 2 3 4 5 

 

    Notice that for odd numbers the sequence has a single 1 in the middle while 

    for even values it has two 1's in the middle. 

 

    Your method should throw an IllegalArgumentException if passed a value less 

    than 1.  Someone using this method would have to call println to complete 

    the line of output.  

 


