

CSE143X Lecture Questions for Friday, 10/16/20

Time (e.g., 12:45) Question Answer

8:45 Is there a way to change the dynamic
of the array so that it wont change
when we modify it. Say that we want a
function to take in an array A and
change it to an array B, is there a way
to have B and A as distinctive arries?

Re: so if we have create a copy array y
that is equal to x, and made another
copy z that is equal to y, would
changing z changes x?

OK thanks!

You can make a copy of an array and
then you would still have the original.
Otherwise the answer is no.

It sounds like you are talking about a
single array x, then create a copy y, then
copy y into z. That would be 3
independent arrays that can be changed
without changing the others.

 Is it possible to make an immutable
array? The final keyword doesn’t work

Edit: Ok, thank you. Just to clarify, an
array declared as final cannot be used
to refer to any other array?

Got it, thanks!

The final keyword does work, but what
it makes final is the reference. So a final
variable of an array type will always
point to the same array. But the array
contents are not immutable. There isn’t
a way to make the array contents
immutable. There are certain collections
that we’ll see later that allow it. For
example, there is a method called
Collections.unmodifiableList that has
the behavior you’re looking for.

Yes, if I declare an array variable to be
final, then it can only refer to one array
(can’t be reset).

 Slightly off topic: Why is “foo” used in
programming so much? Is it some sort
of inside joke?

This is part of what I would call hacker
culture. I have included on the “links”
tab the following link to the hacker’s
dictionary. They have a great entry on
“foo”:
http://catb.org/~esr/jargon/html/frames.h
tml

 Str = str + ?? , java will cast ?? to
string automatically whatever ?? is an
int or char?

“” is an empty string?

thanks!

You can concatenate anything to a
string. That’s why you never need
methods like Integer.toString. You can
always say:

 "" + x

to form a string...yes “” is an empty
string.

