

CSE143X Lecture Questions for Wednesday, 12/9/20

Time (e.g.,
12:45)

Question Answer

14:00 Super disappointed you didn’t test the
bogo sort with the cards - a true
scientist would’ve checked to see if
that was an efficient algorithm.

I’ll take that as a suggestion for next
time. :-)

38:30 Is there a way to make a static method
like mergeInt(Queue<String> result,
Queue<String> list1, Queue<String>
list2) generic (able to take any type of
Queue, not just Queue<String>)
without putting it in a generic class?

That’s it? You still are taking a
Queue<String> argument…

Ok :)

Yes. Let me get a compiled version to
show you. Change the header to this and
it will be a generic sort:

public static <T extends
Comparable<T>> void
mergeInto(Queue<T> result, …)

Good point...change String to T in the
header.

 When you refer to sorting algorithms
as typically having complexity n2 or n
log (n), that is in reference to
comparison sorting algorithms, only,
right?

E.g. Radix sort (here’s a complete list).

What sorting algorithms don’t involve
comparisons? Radix requires finding
specific locations, which is comparing
values. I understand what you’re talking
about, but it’s an odd distinction. What I
can say is that sometimes when you
know something about your data, you
can do better than O(n log n), but it
won’t be a generic sort.

27:40 quicksort//
If you know the minimum and max in
some set/array, why dont you just pull
the average and go through with
quicksort? Seems efficient

Re: ohh i see! Thank you

One more thing, i dont really get how
multiplying the area of the triangle is
getting you the complexity of the
algorithm (the whole n * n / 2 cut the 2
so O(n^2) thing)? Got ittt thank you!

Those situations are rare. You don’t
tend to know what the average value is
going to be. It takes O(n) time to find
the midpoint, which would defeat the
purpose. But there are lots of interesting
ideas people have come up with over the
years to try to choose a good pivot.

I was trying to appeal to your intuition
(not a proof). I was putting a dot for
each basic operation and I was arguing
that the total number of dots you would
end up with would fill half of an nXn
square. So the total number of dots
(total number of operations) would be
half of n^2.

 Are you still here stuart (next page)

The ratio goes from 1.7 to 2.6 just from
adding <=
???
Hmm okay! Thank you again :-)

Yes

I wouldn’t put too much emphasis on
how those numbers turn out. The data is
noisy. I don’t expect that you’d see a
difference if you averaged over a lot of
runs.

Try running it on your own machine.
It’s linked from the calendar.

