

CSE143X Lecture Questions for Monday, 12/7/20

Time (e.g.,
12:45)

Question Answer

 Unrelated, but since you’re using a
Mac, do you have an opinion on the
new M1 chips and their impact on
computing?

Different person (using M1 mac):
It’s pretty good they definitely weren’t
lying about the 20 hours of battery life.

I haven't followed it closely enough to
have a strong opinion.

 In Big O, does log always mean log
base 2?

Very cool. Thanks.

In Big-O notation, we ignore constant
multipliers. So we'd say O(n) rather
than O(2n). For logarithms, every log is
a constant multiple of every other log
that uses a different base. So we don't
include the idea that the log is to the
base 2 because that's just a constant
multiplier relative to every other log.

 What is E? Is it an interface or class
that all wrapper types
implement/inherit?

It's a placeholder that will be filled in
with a type. So it's a kind of parameter.
We wrote SearchTree<E> and in the
client code I filled in the E with String
and with Integer.

 How long would 50mil numbers take
to run on Algorithm 1? Just out of
curiosity. Is this code going to be on
the calendar?

Really good argument for optimization
right there. Nice.

Yes, the code will be on the calendar.
Running 50 mil numbers on algorithm
1? A LONG time. I ran it for 2500
items and it took 0.853 seconds. 50M is
20K times as big, which would take
8*10^12 times as long to run. A little
over 216 thousand years.

 It seems to me that none of the
algorithms are fully correct for two
cases: an empty list and a list with all
negative numbers. In both the first
case, the algorithm results in a start of
0 and a stop of 0 (meaning the first
element). I think you should initialize
the index variables to -1 (or something
similar) to indicate that no values of
the array are being used. Yes, if the
algorithm can’t return an empty
subsequence, it would work for
negatives. But if it could return an
empty subsequence, it should do so.

Sounds good!

I'm revising my answer to this question.
You make a good point. I think I should
have said that the problem is to find the
maximum sum for a nonempty
subsequence. That would mean we
wouldn't try to solve the problem for an
empty array. For a nonempty list with
all negatives, it will find the index with
the largest negative value. For example,
if the array stores [-3, -9, -14,-2, -7], it
will set start/stop to 3 because -2 is the
max sum.

 You mentioned that you have to take
into account all lines of code
(including those within library
methods). I think it’s fair to say that
many operations in Java allocate
memory (using data structures, for
example). Would it be appropriate to
factor in the time/complexity of the
memory allocator/garbage collector
when analyzing such algorithms?

For a concrete example, the following
code allocates an object n times, but
finding memory to store that object is
probably not an O(1) operation. Also,
the garbage collector will have to run.

for (int i = 0; i < n; i++) {
 new Object(); // n times
}

Memory allocation should be amortized
O(1). Yes, the garbage collector might
be invoked for some specific call, but
averaged over all of the calls on new, it
will be O(1).

I mentioned the special case for
allocating an array because all of its
elements must be initialized to 0.

