

CSE143X Lecture Questions for Friday, 12/4/20

Time (e.g.,
12:45)

Question Answer

8:00 Could you explain why doubling the
capacity is constant time again?

thx.

Consider the case where the capacity is
100 and you are adding a 101st item.
There isn’t room for it. So it creates a
new array 200 long and copies the 100
values over to it. That’s a lot of work.
So you’d say that it was expensive to
add the 101st element. But then you
don’t need to do any more expansion to
add another and another and another up
to 200. That’s 99 add operations that
will be cheap after that one expensive
one. If you divide the cost of expansion
(copy to an array 200 long) by the 100
add operations that can be done, it’s only
2 operations per add (a small constant).

16:-ish In the case of ArrayIntListIterator at
least, so each ArrayIntList has
essentially 2 copies of its list? (one in
iterator). Are there any concerns of
space/redundancy here?

So the assignment of this.list = list in
the iterator’s constructor still
references the original list?

Makes sense. Thanks :)

No, that’s not right. There is only one
copy. The iterator just keeps an index
into an existing list, so it’s not a copy.

Yes.

17:00 Would we be able to do this for
.next()?

return list.get(position++);

Would the post-increment still happen,
even though it’s during the return
statement?

I think the fact that you’re not sure
whether it works is an indication that it’s
not a good solution. :-)

Yes, it would work.

23:00 Why don’t we just declare
Iterator<Integer> iter = new
ArrayIntListInterator<>(numbers) ?

And do you think it’s useful to look at
some contents of the Iterator<Integer>
interface now?
Oh it’s not inheritance.

I mention this later. You want to give
the list structure the flexibility to define
it any way it wants to. We don’t want to
know as clients what kind of class is
used to implement the iterator. It’s
better to just know that it implements the
interface.

 The JavaDoc for Iterator says that
remove() is an “optional operation.” I
assume this means that some iterators
are not capable of removing items.
However, I’m wondering if that is
communicated to the caller in any way.
Would a non-removing iterator throw
an exception on remove()?

It throws an exception (something like
UnsupportedOperationException).
That’s a bad way of doing things, but
that’s what they chose.

31 The AbstractIntList class would still
have to mention get and other methods
that are not similar in all the classes but
they would be left hollow right?

Isnt it the idea that if we implement an
interface then we are guaranteeing that
we will have those methods so we have
to mention them? Like we do for
compareTo in Comparable

It doesn’t need to mention them because
they’re included in the IntList interface.
So when AbstractIntList says that it
implements the IntList interface, it is
saying that it will have all of those
methods. When they aren’t filled in,
they remain hollow (from the interface).

When you declare a class to be abstract,
then you don’t need to mention every
method. By implementing an interface,
you are adding a set of behaviors to what
clients can expect of you. And if you’re
an abstract class, you don’t have to
mention the methods specifically for
Java to figure that out.

46 Then why don’t we iterate on the other
list for removeAll()?
Iterator<Integer> itr = other.iterator();
While (itr.hasNext()) {
 Int n = itr.next();
 For (int i : list) {
 If (i == n)
 }
}

I see, thank you.

If you want to propose some code (or
pseudocode), I’ll tell you why it might
be inefficient.

Lots of problems. Your if(contains)
would have to be while(contains)
because there might be more than one.
Your call on remove(n) would have to
be a call on remove at an index. That is
going to involve tons of searching of this
list to see if it contains something and, if
so, where it is. Can’t use a foreach loop
while you’re changing the structure.
Foreach loop won’t give you an index.
This other approach just doesn’t work
well.

31:50 Cant we make the AbstractIntList class
have all the methods in the IntList
interface instead of implementing it,
and make the ones that we don't know
the definition for abstract and define
the ones we know?

Ohhh so the primary reason we use an
interface instead of an abstract class is
to not restrict the class’ inheritance?

I think you’re proposing getting rid of
the interface and having abstract
methods in AbstractIntList. We could
do that, but then someone who wanted to
define their own IntList class would be
required to extend our abstract class.
That’s a big constraint to put on people.
It’s better to give them the option of
implementing the interface.

Yes, but I’d word it as the reason we do
BOTH an abstract class and an interface
is to give flexibility to people who want
to include their own classes along with
ours.

48:50 Why do we need
ArrayIntList.this.remove but not
ArrayIntList.this.size()?

Gotcha.

For code in the inner class there are two
places where you might find the
appropriate method. You might find it
in the inner class or you might find it in
the outer class. For the size method,
there is such a method in the outer class,
but not the inner class, so you don’t need
to say ArrayIntList.this.size (although
you can if you want to). But for remove,
Java gets confused because there are
remove methods in both the inner and
outer class. It really shouldn’t get
confused because they have different
signatures, but they chose not to fix this.

45 Is the reason we can call itr.remove()
without concurrent modification issues
because iterators adjust the position
pointer as they do the remove?
Ok thanks

My version of the iterator doesn’t check
for concurrent modification. The way
it’s done with the built-in ArrayList<E>
is that it uses a field called modCount
that keeps track of how many
modifications have been made to the
underlying structure. The iterator knows
what that should be if it is the only
object that is modifying the structure.
When it sees a discrepancy, it throws the
concurrent modification exception.

40 Before the for each loop, you added
Iterator<Integer> iterator to IntList.
How will we specify what the iterator
method itself does since we only say
.iterator

But that doesnt have the iterator
method itself right? So how would
IntList know what .iterator() means

Ahh okay got it thanks

The description in the Iterator interface
mentions what an iterator should do.
https://docs.oracle.com/javase/8/docs/api
/java/util/Iterator.html

The ArrayIntList class would have to
implement the iterator() method in such
a way that it returns an appropriate
object (an object whose behavior
matches the description in the Iterator
interface documentation).

