
 

 

CSE143X Lecture Questions for Wednesday, 12/2/20 
 

Time (e.g., 
12:45) 

Question Answer 

 My IDE freaks out when I don’t add 
@Override to method overrides, but is 
it absolutely necessary? It works fine 
without. Is it a Java thing? 
 
Ok, thanks! 

No, that’s not a Java thing.  It’s your 
IDE.  It is optional for you to include 
that annotation. 

 Is there a reason why Java doesn’t have 
multiple inheritance? 
 
Makes sense why they would be strict 
on that. 
 
 
 
 
Is the trend of new languages coming 
out after C++ having multiple 
inheritance still a big point of 
contention between developers? 
Something like python still has it. 
 
 
In this case, Riel’s quote is sorta just 
one philosophy out of many right? 

Inheritance is not easy to implement.  
You have to make sure that the subclass 
includes all of the state and behavior of 
the superclass.  It’s pretty ugly in C++.  I 
have mentioned Arthur Riel and his 
design heuristics.  Here’s one: 
54. If you have an example of multiple 
inheritance in your design, assume you 
have made a mistake and then prove 
otherwise. 
He is saying this somewhat jokingly. 
 
Yes, different languages do very 
different things.  Mixins is another 
approach. 
 
Yes about philosophy/Riel. 

29 Why do we ever declare our variables 
the more generic(superclass)  type if 
we cant access the specific methods in 
the subclass? 

There are a lot of situations where you 
might do that.  We defined a Shape 
abstract class with subclasses.  
Obviously it’s helpful to treat things as 
generic shapes most of the time, but 
sometimes you might want to see if 
something is of some specific type to do 
some special action on that object. 

23 Can I analogy Type A = new TypeB() 
with List<Integer> l = ArrayList<>(). 
 
okk. 

Yes, later in the lecture I mention this. 

45 If my Four class did not override 
method1 but called super.method1 then 
it would print One1 right? 

Yes. 



 

 

42 When calling method1, why in class 
Four, it uses super.method1, but in 
class three, just method1, the super. 
Could be omitted? 
 
In practice, we would meet so complex 
situations to deal with the code reuse 
problem?  
ok. 

In class Three, the call on method1 was 
in method2.  In class Four, the call on 
method1 is inside of method1.  So you 
don’t want it to be recursive in class 
Four. 
 
The code reuse problem comes up often 
in practice in real code. 

 Class Four inherit Three, Three inherit 
One. When calling super.method in 
class Four, we refer to class Three or 
One? Or it depends where the method 
is in? 
 
thanks. 

The Four class inherits from Three, so a 
call on super.method1 is a call on 
method1 from the Tree class.  But that 
method is itself inherited from the One 
class.  It basically executes the first 
method it finds going up the inheritance 
chain. 

 How does Java deserialize (json, xml, 
etc.) into a class with respect to 
inheritance? Getting the deserializer to 
choose the right subclass has been a 
problem for me in other languages. 
 
Yes, I am asking about how Java 
recreates a class based on serialized 
json/xml/etc. when that class can be a 
super class, or a range of subclasses. 
For example, in a video game, if the 
server was to send a list of entities to 
the Java client, does Java have a way to 
store each entity in the appropriate 
subclass of Entity, such as either 
Player, Box, or Enemy? 
 
Looking into online resources, I see 
that standard Java serialization uses a 
proprietary format that can probably 
store which specific subclass was used 
to encode the data. (as opposed to 
standard JSON/XML formats which 
would not contain that information) 

Objects in Java know what their type is.  
But are you asking about recreating 
intermediate superclasses? 
 
You’re asking about implementation 
details for the Java runtime system that 
are not normally available to us.  You 
could implement things somewhat 
differently.  But Java does have an 
object for each class and if you have an 
inheritance hierarchy and you serialize 
an object, then it would have to include 
all relevant class objects for it to recreate 
it. 
 
This is an area of Java implementation 
that I’m not very familiar with. 

33:40 When executing the method, the actual 
object means the new <object> that 
was created or the casted object? 
I see, thank you. 

The actual object is the one being 
constructed with the call on new. 



 

 

19:30 Wouldn’t object be considered the 
superclass here? 

If you’re asking about the Object class, 
it is the one and only class in Java that 
has no superclass. 

 


