

CSE143X Lecture Questions for Monday, 11/30/20

Time (e.g.,
12:45)

Question Answer

 Where is Unicode/ASCII included?
Is it ‘baked in’ with the OS?
Programming language?

In this sense these are standards for
reading bits right?

Let’s say I’m making a programming
language from scratch, do I have to do
work to make sure it’s ASCII/unicode
compatible, or does the standard
include some sort of library that
everyone uses.

You could think of it as being part of the
operating system. It knows how to read
text files. But individual programs like
editors also need to know how to read
ASCII files.

Yes (how to interpret the bits you read).

In general you would rely on libraries
provided by the operating system.

 Assuming the Node of each tree has a
field for the character, in those nodes
that you create by combining the two
lowest nodes, would it just not have a
value?

The internal nodes created when you
combine two subtrees don’t need to keep
track of a character.

 Are ASCII a set length? Always 8 bits?

I’m quite confused as to how ASCII
and huffman trees store the characters
in bit:
For example for the letter C in the
example:
In ASCII: it would a bunch of 0 & 1
taking up 8 bits
In Huffman: it is just 01?

So why then would the compressed file
be longer?

Oh I see, thanks!

ASCII is a 7-bit code with 128
characters. As I mentioned, the 8th bit is
used for different things.

Yes, the letter C in our example would
have the code 01, which is just 2 bits
long.

If you give a command like this:
 System.out.print(0);
Java will output the ASCII
representation of the character “0”. That
will require 8 bits of storage. So using
the example of the code 01 for C,
writing it to a file as text will require 16
bits, which is very wasteful. That’s why
you want a compact binary file, not a
normal text file.

 In general, we are supposed to remove
debugging code before turning in our
assignments. Would it be ok to leave
HuffmanNode.toString()? (this method
is not required by the spec, but is
useful for reference/debugging)

You can comment out debugging code
and leave it in your program as long as
you comment that it’s debugging code.

 For the Huffman tree, each character
would start in different positions within
a byte, so would that be inconvenient,
like with only using 7 bits with the
ASCII, or would it not matter?

I see now, thank you!

It is inconvenient in the sense that you
can no longer view the file as a simple
text file. I showed this when I tried to
display the contents of hamlet.short. It
was incomprehensible. But compression
is something you do to make a smaller
copy. I think people understand that you
need to undo the compression (unzip) to
get back a readable file.

35:39 Can you clarify 4x as big? When you
say big what are you referring to?
Since the compressed/zip file does take
up less bytes, I’m unsure what the 4x is
referring to.

Ohhh I see now, Thanks for the
clarification.

I was saying that if you use simple
commands like System.out.print for the
0s and 1s, then you will be producing
output in text format (standard ASCII).
In that format, each 0 and 1 will require
8 bits of storage. If your compression is
giving you a 50% reduction, then the
new file will require n * 8 * 0.5 amount
of space, or 4n.

38:49 When there are 803 bits, I don’t know
why it needs to read 5 more bits to
recognize a byte?

I see.

My BitInputStream and
BitOutputStream give you bits in
multiples of 8. You can’t get just 803
bits. You’d get 808 bits. So there are
going to be 5 stray bits at the end that
can cause a problem.

 ^ I’m assuming that only when the
compressed version will have a x
number of bits that is not a multiple of
8 right? (Sorry I’m confused with how
the bits work)

What output or character does the
pseudo eof character output when
there’s the extra bits? Does it just make
a certain letter have extra 0/1’s?

Oh I see, thanks that clarifies things.

Just to make sure the spec will clarify
how the pseudo eof will be identified
right?
Thanks! Sorry so many qns.

I think what you said is right. Using the
Huffman code, we’re likely to get a
sequence of bits that is not a multiple of
8, like 803. But my BitInputStream and
BitOutputStream are limited in how they
work. They can only give you multiples
of 8. So once you get above 800, it goes
to 808. That’s a mismatch between the
way the Huffman code works and the
storage options available to you with the
bit input stream classes.

No. We’ll be on the lookout for the
pseudo-eof when we are decoding and
we’ll stop as soon as we see it. We
won’t write out anything, we’ll just stop
processing the file.

Yes, the spec is very clear about the
pseudo-eof.

