

CSE143X Lecture Questions for Wednesday, 11/25/20

Time (e.g.,
12:45)

Question Answer

4:43 ADT is interface in java?

Oh thx.

ADT is a technical term used by
computer scientists to describe an
abstraction. But in Java, the ADTs are
implemented as interfaces. Interfaces
can be used for other things as well, as
we will see later in the lecture today.

9:10 Could you explain again why stack
interface only has stack class?

Lol.
When designing programming
language, the reasonable order is
interface first and then corresponding
classes?
Thank you.

The Stack class was introduced early
with Java and the software engineers
weren’t being as careful in their
programming at that time. So they
didn’t make a separate Stack interface.
It’s bad design, but the Java folks didn’t
want to fix it. That’s the problem with a
practical language...it always has some
warts.

Yes, you should introduce interfaces
when you are introducing a new kind of
data structure that you expect to be
implemented in different ways.

25 Are there other implementations for
queues besides linkedLists?
Ok thanks.
Will we be using any of them in class
besides linkedlist?

Yes. If you’re interested, you can go to
the Java documentation for Queue and it
includes a list of known implementing
classes.
https://docs.oracle.com/javase/8/docs/api
/java/util/Queue.html

Yes, you will use something called a
priority queue for the final homework.

13:51 If I am understanding correctly,
“q.remove()” will return the value
removed and also alter the “q”?

Thanks!

Yes. I worded it as “removes and
returns the front of the queue” in the
short description I showed.

29:20 Petition to start CSE 144? I taught a version of the course once:
https://courses.cs.washington.edu/course
s/cse190l/07sp/

28:20 At the end of the first queueToStack,
the stack is the full [3, 6, 9, 18,15,12].
So wouldnt the call to stackToQueue
reverse the whole stack and not just the
last 3 elements?

Oh right my bad i was still working
with the stack from the for loop.
Thanks!

There were two changes that I made to
the code. One problem was that it was
processing only half of the values (18,
15, and 12). I fixed that by changing the
for loop to a while loop. Once you do
that, the loop leaves the queue with the
values [18, 15, 12, 9, 6, 3]. So then we
put them back to the stack, but they’re in
reverse order. That’s why you need an
extra stackToQueue followed by
queueToStack.

34 Does the comparable interface have
something that automatically orders the
objects based on whether compareTo
returns a negative or positive int?
Ohh I must’ve missed that, thank you!

The interface itself doesn’t have that, but
client code using the interface does. So
in the Arrays class there is a sort method
that depends on results from calls on
compareTo for it to put things in sorted
order.

 Instead of an interface can’t you make
a parent class for all circle squarr and
rectangle? and put compareTo in that
parent class?
right :))
for the class Shape if we just put
something random inside area() instead
of using abstract, would the child
classes’s area methods still overwrite
it?
so by using abstract it will return an
error?
ok, thank you!

Wait for it…

Yes, if you gave a default definition for
the area method in Shape (e.g., returning
0), then the various area methods in the
other Shape classes would override it.
But what if some Shape class doesn’t
include an area method? It will be
returning 0. That’s not a good idea.
Better to be clear that you must provide
a definition for the area method.

Yes, by making it abstract, classes like
Square will be required to override area.
If they don’t, you won’t be able to create
instances of them.

 I don’t understand why you need use
super when move toString() to the
abstract class but don’t need to use
super when move compareTo to the
Shape. What’s the difference?

Sorry I missed some part. I see now.

The issue has to do with the constructor
I added to the Shape class that takes a
String representing the name of the
shape. Because the Shape class has a
constructor that requires a String, you
can no longer rely on a call to:
 super();
As a way to handle setting up the
superclass part of the object.

 If the interface could be replaced by an
abstract class, why do we need
interface? Or why don’t we relax the
restrictions of interface which could
only “say hello”, but could define the
methods inside. What’s the purpose to
design these fancy concepts?

Make sense. thanks.

Java has single inheritance. You can
extend only one class. Multiple
inheritance is tricky and Java decided to
avoid it. But you don’t want to be
limited to just one such relationship. It
is easier to allow multiple interface
relationships because there is no
concrete code to inherit from the
superclass.

