

CSE143X Lecture Questions for Friday, 11/20/20

Time (e.g.,
12:45)

Question Answer

34:20 Didn’t switch to the document camera
on the recording for the first few
minutes.

Binary tree being discussed:

 12
 / \
 / \
 18 7
 / \
 / \
 4 13

 Could we check for the base case at the
end of the recursive method?

I see, thank you.

You would still need to check at the
beginning of the method as well, so that
would lead to duplicate checks. That’s
why the “recursive zen” approach is to
allow it to make an extra call where the
check is made.

3:10 Something that I did not fully
understand about recursion is why do
we always have to have two methods;
one public and one private. If one of
the method’s job is only to call the
other method, we might as well
eliminate this method and only call the
method itself that does the job.

Makes sense, thanks,

Often the key to solving a problem
recursively is the selection of
appropriate parameters. This is
normally something you wouldn’t want
to force a client to understand. So it
makes sense to have a public method
with the kind of parameter passing you
want the client to see and then you have
complete control over the parameter
passing for the recursion by having a
private method.

 The lecture in the end got cut off as
you were saying something

Ok, thanks.

I’ll start with that on Monday.

 How can one do the “unchoose” step
when one is manipulating a String? It
makes sense with an object like a
Board, but what about immutable
objects or primitives?

But why is the unchoose necessary in
that case?

Okay. So it’s just a best practice to do
the unchoose in case we need to use
the object later? Even if the specific
problem doesn’t require it?

Great, thank you. Makes sense

In some of the section problems we
constructed new strings. For example,
as you choose between going N, NE, or
E, we would append characters to a
string. That works even though strings
are immutable.

In those cases it wasn’t because it was
part of the parameter, but you might
update a string, for example, and need to
go back to the previous string.

You shouldn’t include code you don’t
need. I’ve said that the unchoose step
might not be necessary. Each problem
leads to its own different situations.

14:03 How many patterns could I get for the
4-queen board finally?

Much fewer than I think, thx!

There are two solutions.

15 Based on the answers above, the rule
for having a add-remove pair is cause b
is a parameter of the recursion method?

Make sense.

The backtracking solution depends on
choosing positions for queens and
placing them on the board. That means
you have to remove them later or it just
won’t work.

17:20 According to the directory you
developed and the decision tree, the 8-
queen recursion is implementing dfs?

okie.

Recursive backtracking tends to lead to
depth-first exploration. The tree is in
some sense neutral because you could
explore it in any order.

 When I am implementing a public-
private pair, which essentially do the
same thing, is it ok to do referential
method comments such as the
following (to avoid copying the main
method comment)

/**
 This method …
 */
public void doSomething() {...}

/**
 @see Class#doSomething()
*/
private void doSomething(int
argument) {...}

Sure, you could do that. Also we are a
lot more relaxed about comments on
private methods. The big requirements
are on commenting the public methods
that a client would see.

 Why does this happen (from output
comparison tool (dict1.txt)

phrase to scramble (return to quit)?
1234
Max words to include (0 for no max)?
0
[] ← why?

Would we lose points for making this a
special case? My current solution with
no such special cases does not output
anything (but works in all other cases)

There are no letters to account for in the
string “1234.” The question is to show
all sets of words that contain that set of
letters. There is exactly one such
solution. The empty set.

Notice that this is very different from
something like the string “r” where there
is no set of words that has that
combination of letters.

We don’t comment on grading. Make
what you think are good choices.

 You’re probably not going to say, but
would exploration being in dictionary
order count as an implementation detail
or a documentable fact?

Ok, that makes sense. Thanks!

If it has to do with the behavior of the
object, then it is something the client
would want to know. If it’s a detail
about how it was implemented, then it is
an implementation detail.

 You may want to update the
documentation. It is currently written
as if we are implementing
LetterInventory (such as “your method
should throw an
IllegalArgumentException” for void
set(char letter, in value))

This is an artifact of how it is used in
143. For the 143 class, they implement
LetterInventory early in the quarter. But
I can see how it can be confusing.

40 Can subtrees share the same leafnode
or are they independent of each other?

They have to be independent.

46 When a tree only has one subtree, it
could be considered as a linked list?

Good example, thxx.

No, because the left and right subtrees
are distinguishable. A tree with an
empty left subtree and a leaf to the right
is not the same as a tree with a leaf to the
left and an empty subtree to the right.

