

CSE143X Lecture Questions for Wednesday, 11/18/20

Time (e.g.,
12:45)

Question Answer

 Can I understand dead end in
backtracking like the base case in
recursion?
I see.

Can I say backtracking is a kind of
recursion?
thx.

It’s similar in that the backtracking ends
at a dead-end.

No, backtracking is a technique that can
be implemented recursively or
iteratively.

32:15 For 3 digits, the decision tree has 4
levels. So for 4 queens, the tree will
have 5 levels?

Got it.

It depends on how you count levels.
You are seeing four levels in the 3-digit
case because at the top we have made no
choices. If you include that top level
before choices have been made, then
yes, 4-queens would lead to 5 levels.

1:00 Can we also apply for the TA positions
in later quarters?

Thank you.

Yes.

9:38 When you say search space, do you
mean like a blank _ u can fill any digit?
I see thanks!

Yes, you can describe the digit search
space that way (a blank to be filled in
with a digit).

41:08 Why after the first column, I call the
second, and then the third… column in
the recursion. Intuitively, I think the
first search has 8*8 choices, then 7*7,
then 6*6...like that, but not column by
column or row by row.

Kind of. To meet the rule of
unthreatening each other, it’s 8*7*6…
?

We know that any solution to 8 queens
has one queen in each of the 8 columns.
That observation allows us to greatly
reduce the number of choices to
consider. We can pick the 8 queens
column by column, which means the
total number of possibilities is 8*8*8…
(eight times, so 8^8).

 Will backtracking cover ALL cases?
For example you find a solution in
row2col1, you print it, but do you still
back up to the top level and carry on
finding other solutions?

I see. I’ve encountered this before for
sudoku solving, but that one only did
one solution. I’m guessing we toggle a
flag or something to stop once we find
a solution?

Ah, okay. Then the function itself
becomes the conditional for whether
we continue or not?

If I do something like
if(!explore(...)){
}
Does it run the method in the
conditional statement?

Interesting. Thanks! This is very cool.

You can decide whether you want your
backtracking solution to find all
solutions or just one solution. The code
I wrote for 8 queens finds all solutions.

Typically you would return a boolean
that indicates whether or not you found a
solution and you would stop exploring
once you had the value true returned.

Yes, the return value of the method
determines if you continue.

You would tend to replace the call on
explore with:
 if (explore(b, col + 1)) {
 return true;
 }

47 I am still kind of confused with the
choose, explore and unchoose flow. I
understood after the Queens game
visualization was showed such that it
has to undo the previous choice when it
is unable to place a Queen in that
current column safely, but the code
itself is telling me that it will be undo-
ing every Queen placement before
moving on to another Queen placement
in the next column even though it has
been placed safely?

Why does it have to remove it each
time?

Oh! So the code is kind of placing each
queen at each row, then removing, then
trying to place another one at another
row? Sorry, I mistakenly thought that
you were removing previous safely
placed queens from previous columns.
Does this sound right?

Awesome, thanks!

Yes, it always removes the queen after
fully exploring the options with the
queen placed there.

If you don’t remove, then you leave
behind a queen that will threaten any
other queens you would want to place in
that column.

I think you’re understanding it now.
Think about the first few calls. I ask a
robot to explore column 1 and it places a
queen in row 1. That one is safe and
stays there. Then I ask a robot to
explore column 2. It finds that rows 1
and 2 are dead ends, so it skips those.
Then it places a queen in row 3 and
recursively explores. After that is done,
it removes the queen from row 3 so that
the next time through the loop it will
place a queen in row 4 of column 2. As
you said, the queen in column 1 is not
removed (not yet).

46 Suppose after every 1st recursive call
on explore we have found the correct
solution, then we will never call
remove right?

But if we’ve found the safe positions
without ever having to change our
previous decision, why will the
execution reach remove? Or will that
be once we place all our queens AND
print them?

The printing will happen backwards
correct?

No, we end up calling remove when the
recursion finishes. We always remove
the queens we place.

The recursion explores and explores,
printing every solution it finds, but it
will eventually run out of things to
explore. So it will eventually get back to
that part of the code and will remove the
queen it had placed before exploring.

I’m not sure what you mean by
backwards. It prints as soon as it finds a
solution.

32:04 Since there's 8 rows, wouldn’t there be
4 more possible rows to put the queen?

Cause you said you can put a queen in
each of the first four columns, but you
also put them in the 4th-8th column

I don’t know what you mean by 4 more
possible rows.

There might have been some confusion
about when I was doing the 4-queens
problem versus the 8-queens problem.
When you do 8-queens, there are 8 rows
where you can place a queen in each
column.

 Are dead ends where the value of the
backtracking is not wanted? Or the
point wanted. > solve (3, 2) is (3, 2) the
dead end?

You reach a dead end when you find that
a combination you are considering is not
a solution.

 Why do we find and compute dead end
values? Wouldn’t it be better to avoid
them?
But if we know something is going to
be a dead end, wouldn’t it be better to
avoid it completely instead of
exploring it?

I see, thank you.

It’s more that we encounter dead ends as
we explore. And when we encounter
them, we stop exploring that part of the
decision tree.

Sometimes you avoid a recursive call
because you know it will lead to a dead
end. That’s what we do in the 8-queens.
Other times it can be more convenient to
just let the call occur and then notice it’s
a dead end, as with the section problem
with N, NE, and E.

 Boy it would be fun to do the same on
Sudoku, do you think it would take a
whole bunch of additional
programming to get there?

Sudoku lends itself nicely to
backtracking. I have the TAs go over
that in the 143 sections, but we don’t
have time to fit it in for 143x.

If you want to check it out, here is the
solution:
https://courses.cs.washington.edu/course
s/cse143x/20au/lectures/sudoku.zip

Run Sudoku.java and give it a file like
sudoku1.txt. The animation is cool.

