

CSE143X Lecture Questions for Monday, 11/9/20

Time (e.g.,
12:45)

Question Answer

49 Your thoughts on Java’s lack of string
multiplication? Good or bad?
I cry every time I need to write a for
loop instead of “ “ * 4 :(

Java doesn’t have operator
overloading? Bummer.
Petition to redesign intro programming
courses to use C# or Python pls.

Coming from C++, I think Java having
some limitations is a good thing
sometimes :D

Truly ahead of the times.
Petition to do 142 in Java and 143 in
Javascript just to confuse people. :D

What do you think of the newer
languages for this then? Like Go or
Rust. (or Scratch :p)

Python introduced that syntax to most
programmers. It’s nice to have
available, but Java in general hasn’t
emphasized that as much. I’d rather
have operator overloading the way they
did it in C#. In C# you can use array-
style bracket notation for maps, which is
much more intuitive.

The argument against is that operator
overloading is a mess in C++ and I tend
to agree (too loose). C# has a nice
compromise.

Hmmm...try to argue that C# could
replace Java in intro. Who might have
written about that?
https://www.researchgate.net/publication
/215900276_Can_C_replace_java_in_C
S1_and_CS2

Stanford does 142 in Java and Python
and 143 in C++. Pretty confusing.

I still think Java is the least bad choice
overall, but my coauthor Marty Stepp
thinks we should teach JavaScript and
others I know think we should teach
Swift.

46 How careful should we be with
preventing infinite recursion? In your
file-system example, depending on
how Java handles symbolic links, the
recursion could be infinite.

It’s always good to think about
situations that could lead to infinite
recursion. We’ll be very clear in our
assignment specifications about what
cases we want you to consider.

30:00 The reason we don’t use index++ is
because it won’t increment until after
the recursive call - right?

In general you don’t increment variables
the way you do in an iterative solution.
You instead pass on the updated value.
But you’re right that it won’t work
because you’d have to say ++index to
get it to work right or do the increment
before the method call. But why
increment it at all? That particular call
has been asked to deal with a specific
index. Why change it?

32 How can you use two sum methods?
Wouldn’t java be confused on which
sum method to call?

I see thanks.

We’ve discussed this before. You can
overload method names in Java if the
different methods have different
signatures (signature = name and
number and type of parameters). One
sum method has a single parameter of
type int[]. The other has two parameters
of type int[] and int. It is easy to figure
out which method to call.

 Why wouldn’t writeBinary print the
number backwards? Wouldn’t the base
case be printed first, and then each
recursive case be printed in backwards
order?

Oh I see, I had the wrong
understanding of how the binary
number would be represented. Thank
you

No. Notice how in the recursive case we
first recursively print the binary
representation of n/2. All of those digits
will be written out before it gets to the
print command that prints n % 2. Think
of the call on writeBinary(6):
 Calls writeBinary(3, which is 6/2)
 Calls writeBinary(1, which is 3/2)
 Prints 1 (base case)
 Prints 1 (which is 3 % 2)
 Prints 0 (which is 6 % 2)
So it prints 110.

