

CSE143X Lecture Questions for Friday, 11/6/20

Time (e.g.,
12:45)

Question Answer

41:03 You are actually using a data structure,
it’s just implicit. All recursive calls
take place on the program's stack.

Yes, I mention the call stack later.

3:40 What is the difference between an
invariant and a precondition?
I see, thank you.

A precondition is a constraint on a single
method. Invariants are true all the time,
so they apply to every method (and must
be maintained by each method).

18 Once we have added the compareTo
method in our program, do we still
need to implement the Comparable
interface?

Ok, but even if we don’t have it, won’t
our client method simply call the
compareTo method, or does it not work
like that?

Got it, thank you!

Yes. It’s not enough to have the
method. You have to have the
“implements” clause in the class header.

Yes, but you won’t get past the
compiler. To call a method like
Collections.sort, you have to convince
the compiler that you can have values
that can be compared.

 Do recursion buddhists aim

to achieve boolean zen? Re:

阿弥陀佛

I think that boolean zen resonates
particularly with recursion buddhists.
And we’ll have recursion zen soon.

17 What is the purpose of us
implementing the Comparable
interface if we have to write the
compareTo method ourselves?

The compiler wants to know that your
various method calls will work. In
Collections.sort, the code calls
compareTo. How do I know you’ll have
a compareTo method? I want to have a
general sorting method that works on all
kinds of data. What all those different
types of objects have in common is that
they have to have a method called
compareTo. That’s what an interface is
perfect for (guaranteeing that it has a
particular behavior).

17 Is this compareTo method the same as
the String one?

No. Each class defines its own
compareTo. For the String class, it
examines the sequence of characters in
the two strings.

 For String[] arr, if I want to use
Arrays.sort(arr), do I need to add my
own compareTo() function?

Then for Angle class?

Thanks!

The String class implements the
Comparable interface, which means it
has a compareTo method. That means
you can call Arrays.sort to sort an array
of String values and you can call
Collections.sort to sort a list of String
values without writing a compareTo
yourself.

The final version of Angle that had
compareTo and implemented
Comparable allows it to be sorted by
Arrays.sort if you have an array of
Angle objects.

 recursion to me has always seemed like
memorizing a bunch of clever tricks to
break down problems. Do you have
any recommended reading to kinda
know how to “think more recursively”?

Eric Roberts wrote a book called
Thinking Recursively but it seems to be
out of print and expensive to buy a used
copy. I recommend just paying attention
to the examples we’ll cover. We will
see a lot of interesting examples of
recursion before the quarter is over.
Also...chapter 19 on “Functional
Programming with Java 8” is a great
chapter to understand the computer
scientists who love recursion.

14 So does a TreeSet implement the
comparable interface and have its own
compareTo?

Edit: so all wrapper classes implement
it?

No. TreeSet assumes that all values
added to the set implement the
Comparable interface, so it assumes that
all of the values stored in the set have a
compareTo method.

It happens to be true that all wrapper
classes implement Comparable, although
Java didn’t have to necessarily make it
that way.

40 Do you need to write n = n - 1
ok

No. Each recursive call knows which
value of n to use, so we don’t need to
change n before we make a call.

This is a good example of where
recursion is different from iteration.
With a loop, we’d have a shared variable
n that we’d have to change as we go
through the loop. But with recursion,
each method has its own copy of n, so
we don’t have to change any of those
individual values of n.

 I just don’t understand how Angle
could implement Comparable<Angle>,
I mean, how a class could implement
an interface of that class. I know there
are TreeSet implement Set, ArrayList
implement List. But in the two
examples, the class and interface are of
the same type, but not the class is the
type of the implemented interface.

I see.

A class can implement many different
interfaces. It may seem odd that Angle
implements Comparable<Angle>, but it
just means the Comparable interface has
the option to fill in a type for what
you’re comparing to and you can
compare objects to other objects of the
same type.

 Is recursion an intentional language
design choice or just the natural by
product of being able to call functions
within themselves? Was there
recursion with assembly code?

Language designers have to make a
decision about whether or not to support
recursion. The old-style programming
language BASIC had subroutines
(GOSUB), but that wasn’t real recursion
because you didn’t get an independent
version of each method call (each with
its own local variables and its own
“program counter” to keep track of
where you are in program execution).

48:00 You ripping up all those poor robots is
making me tear up a ‘lil bit. For the
“reverstance!”

Java has no sympathy for recursive
invocations that have finished executing.
Maybe they’re happier in call stack
heaven because they know they
accomplished their purpose in life.

45:37 How about changing the order of
String line = input.nextLine() and
reverse(input)? The same result?

Oh so I can say, before calling recurse,
I always need to do something else at
first to terminate the recursion, right?

Gotcha, thx.

No, if you switched the order you’d get
infinite recursion. It would ask if there
is a line, then it would recurse, ask if
there is a line, recurse, ask if there is a
line, recurse, etc. No progress. Like
asking every robot, “Do you know what
row he’s in?”

Your recursive call has to be on a
simpler case than the original, so you
have to do something to get you closer
to being done (like reading a line of the
file in the case of the reverse method).

