

CSE143X Lecture Questions for Friday, 10/30/20

Time (e.g.,
12:45)

Question Answer

8:50 What is front defined as?
Okay so it is a whole node not a .next
Ok got it

We’re exploring how to write code for a
class called LinkedIntList. It has a field
called “front” of type ListNode.
It is basically a variable that can store a
reference to a node. It is not itself a
node.

 If there is a method in the
implementation view that is not client
side (eg: to reduce code redundancy)
do we have to comment on it?

I’m sorry, I didn’t quite get what you
mean in the last sentence. What does
“discuss the implementation” mean
and how can a method do that?

One last question: When you say
“can”, does that mean it’s optional?

Ok, thank you for the clarification.

Yes, you can end up with methods that
are used in the implementation to
eliminate redundancy but which you
don’t want to include in the client view.
You should declare all such methods as
“private”. There is an example in
Monday’s ArrayIntList that has a
method called checkIndex. You can
introduce as many private methods as
you want. Private methods can include
comments about the implementation
because a client wouldn’t see them.

Yes, optional.

52:00 Video cuts off :(
 is the inchworm okay D:

Re: thanks!

Yes, you can use inchworm. Not much
was cut off. I include both versions in
handout #12:
https://courses.cs.washington.edu/course
s/cse143x/20au/handouts/12.html

7:48 Is the if statement that checks if front is
null considered a pre condition?

Understood, thank you.

No. A precondition is something that
has to be true. For example, addSorted
can’t work with a list that isn’t sorted.
But the code in the if that handles the
front case means you can deal with that,
so it doesn’t need to be a precondition.

41:44 Should it be while(current.next != null
&& current.next.data < value), the
order inside is important?

OK.

Wait for it...

17:20 Changing a .next link means changing
a .next link of front?

But the .nexts will eventually always
stem from front, right?

Ok, thank you.

Not necessarily. The field called front
stores a reference to the first node. You
might change the .next field of that node.
Or you might change the .next field of a
node later in the list.

All nodes can be reached from the front,
but they don’t lead back to front. Yes,
all nodes are reached by starting at front
and moving forward.

 Can you explain robust/sensitive tests a
little more? (what they are, how they
differ)

Re: makes a lot more sense! Thank you

A sensitive test is one that can generate
an error. For example, testing whether
current.next.data has some value will be
a problem if current.next is null. That
would throw a NullPointerException.
To avoid that, you’d make sure that
current.next is not null. So it is more
robust to first test the value of
current.next before testing
current.next.data.

Here’s a simpler example. Suppose you
have an int variable called n and you
want to test whether 10 / n is 2. You
would see if (10 / n == 2). But what if n
is 0? Then you get an exception thrown
because of division by 0. You can
always test whether n is 0 (that’s a
robust test). You can’t always test
whether 10 / n == 2 (that’s a sensitive
test). So you test something like:
 if (n != 0 && 10 / n == 2) {...}
That puts the robust test first.

