

CSE143X Lecture Questions for Wednesday, 10/28/20

Time (e.g., 12:45) Question Answer

0:00 Mic sounds silky smooth. Nice
upgrade

Cool beans

2:22 Correction from Monday, dressing up
as LinkedList for Halloween instead.
Re: It do be like that sometimes.

I’m hollow inside, so I’d dress up as an
IntList interface.

 So we don’t use some sort of extra data
structure to ‘contain’ all of the nodes,
but instead work with the first node in
the LL?

Re: is that the reason LL are bad at
random access, because you’d need to
traverse from the start each time?

That’s right. You just store a reference
to the first node and because of the links
you can get to all of the others from
there.

Exactly...random access is not possible
because of the need to follow all of those
links.

11:40 So you mean the difference between
the ListNode and the referral to a
ListNode(the next field inside)?

Make sense.

I’m not sure exactly what part you’re
referring to, but I was talking about the
difference between the node object and a
reference to the node object (like the
difference between a person and a phone
number used to contact that person).

15:45 If the list variable stores the address of
the new ListNode, why list’s type is
not an int cause i think the address
should be a number.

I see.

The address will probably be an integer,
but Java does not allow you to
manipulate addresses as integers. They
preferred to have this notion of a
“reference” where they don’t tell you
exactly what it is.

19:51 Could you explain the difference
between uninitialized and null again?

So null has a specific value?

Thanks!

Suppose I say just this in my Java code:
 ListNode list;
At that point I have declared a variable
but haven’t given it a value. So if I tried
to test it’s value, I’d get an error. But if
I say:
 list = null;
Then the variable has a value and can be
tested with code like:
 while (list != null) {...}

Yes, null is a specific value that is
recognized and can be tested against.

 When you use the word “error” in your
above response, are you implying that
this occurs at compile time, as opposed
to runtime (where it would be an
“exception”)?

If so, is it possible for “uninitialized”
variables to exist at runtime?

The Java compiler verifies that variables
are initialized before they are accessed,
so as you suggest, it should never
happen that a variable is uninitialized at
runtime.

 Can we store different data types in the
different nodes of a linked list?

Got it! Thanks

I’m not sure what you’re asking. You
can have more than one data field, and
they could be of different types. And the
built-in LinkedList<E> allows you to
store different types of data.

 This is based on the above question:
Could a LinkedList<Integer> node
point to a LinkedList<String> node?

No.

 So I know it was mentioned that setting
up Linked Lists with for-loops isn’t
exactly pretty... but is it off limits? (is
it generally just considered super
sloppy?)

It’s a matter of personal choice, but it
gets quite ugly, especially as the loop
tests start getting longer, as we’ll see in
Friday’s lecture.

43 If I’m getting this right, there’s a node
class that ListNode implements whose
fields are private?

No. We define two classes. The first is
called ListNode and it has two public
fields. So it’s a dangerous class (not
well encapsulated). There is a second
class called LinkedIntList that has one
private field that stores a reference to the
front of the list.

24:05 “How many different places are there
here where im storing a reference to a
listnode?”
Can you explain this a little more? I
thought it would be the arrows creating
new references (so 4) but this is
wrong?
Re: gotcha!! Wasnt counting the null
references, thanks

Two of them are set to null initially (the
links that appear at the ends of the two
lists). But there are 6 different places
where a ListNode value could be stored.

 How does Java address the issue of
garbage collection when it comes to
linked lists? Does it have to traverse
the entire list every time?

Yes, but I was asking about the
performance implications of an GC
algorithm that may have to look at the
entire list to determine which ones
cannot be reached. Does Java optimize
that at all?

Java has a process known as the garbage
collector that periodically looks for
objects that cannot be reached by code.
When an object no longer has a
reference to it, it sort of floats away and
the garbage collector reclaims it. I’ve
sometimes used the analogy that they are
like helium balloons that you let go of.

Java does not commit itself to a specific
garbage collection algorithm. It’s true
that you might need to look at all of
those nodes to figure out that they can be
reached.

13:55 If we don’t use “new" to a class name
variable, then this variable is always
store a reference to an object of that
class?

gotcha

If you have a variable whose type is
something like Foo, then it stores a
reference to an object of type Foo.

 Is ListNode a built in class or just
something we’ve written?

Something we’ve written.

 The ListNode could be relaxing cause
it implements what? Maybe because
the ListNode class has a ListNode field
inside?

Then why do we need the
LinkedIntList class rather than use
ListNode class directly?

If I change the public field of ListNode
to private, then we don’t need
LinkedIntList?

I can see that later, thx.

No. The point is that the client uses
LinkedIntList and there is no way for the
client to get access to a node object. So
there is no way the client could damage
a node.

If you didn’t have the LinkedIntList
class, then your client would be using
ListNode, which is what we want to
avoid.

You want both classes. There are things
you want to associate with the overall
list and things you want to associate with
each individual node. Nodes are very
simple components that are used by the
list class to store the data.

 While creating a list node, is there a
way to know how many nodes in that
list, or do we have to go to every
“.next” to get the length?
Thanks!

We are using a simple implementation
where you’d have to go through each
.next link as you suggest to find the
length. But typically you would store
the list length as a field in LinkedIntList.

