

CSE143X Lecture Questions for Wednesday, 10/21/20

Time (e.g., 12:45) Question Answer

 35:00 Take off your headphones
- loud noise warning.
(This message is sponsored by the
American Hearing Association)

11:00 Are we going to be able to use
toString() so we don’t have to call the
method? (Thanks! - oh, just got there
in the lecture.)

Yes. You don’t have to call toString() in
most cases.

 A bit of a random but out of personal
curiosity, what is the course website
programmed in? I saw that CSE143's
course site uses Jekyll. I'm assuming
HTML/CSS/JS but does that mean
Stuart cracks open the source code
every week to add links and stuff?

Re: Ohh interesting. Thanks for the
response! I guess it’s like a DIY
Content Management System. Very
cool :D

I access a directory where files are
stored for the website. I just modify
specific files like calendar.shtml to add
new content. Marty Stepp developed
most of the JS that we use on the site.

25:02 Screen blacks out. Thanks...still working on this.

~36 Ever since loud sound (lightning?), mic
is picking up static (even 10 minutes
after) [on the video it seems like he
struck the mic with his hand. Lol] [[it
looked to me like he tried to cover the
mic to shield it from lightning sound
but maybe]]

Not sure why that would be...I’ll check it
out. Very simple...gesturing and
accidentally hit the microphone.

16:54 So just to be clear, if you write your
own toString() method but don't call it,
java will override it’s own toString()
method and call the one you’ve
written? And the same would happen if
we did System.out.println(p1) without
the concatenation right?

Yes, Java generally calls your toString
method in most cases (string
concatenation, println, etc).

17 What would happen if your toString
method did not return a String? Would
it still work the same?

You aren’t allowed to change the return
type of an inherited method like
toString, so it wouldn’t compile if you
gave it a void return type.

23:33 You mentioned that the default/empty
constructor “sets the fields to be the
[zero equivalent values]”

Does that imply that if you have a non-
empty constructor, and you don’t
initialize one of the fields, that that
field won't be initialized?

Re: Makes sense!

Java always auto-initializes all fields of
an object before the constructor code is
executed.

25 Are we allowed to have 2 methods of
the same name and parameters but
different return types?

No. The return type is not part of the
signature.

48-ish Do we tend to write static class
methods ever in 143x?
Or is the approach to use instance
methods always.

Re: cool, thanks!

We tend to have you practice static
methods in the 142 part and then switch
to instance methods for the 143 part.
Because Java is an object-oriented
language, it tends to have more instance
methods. The exceptions tend to be
things like the Math class where you
don’t have any state information or
constants that can be static.

51:40 Will we ever lose style points for
including unnecessary “this.” notation
for the sake of clarity?

No, that’s a matter of personal choice,
although we encourage you to go for
consistency.

47 When would the 0 argument
constructor ever call one with
parameters, or rather how would it
know what values to pass?

This is Java’s equivalent to default
values. For a point, it makes sense that
the default x/y would be the origin.
Often there is an obvious default.

