
 CSE143X Sample Midterm, Fall 2020 handout #7

1. Expressions, 10 points. For each expression in the left-hand column,
 indicate its value in the right-hand column. Be sure to list a constant of
 appropriate type (e.g., 7.0 rather than 7 for a double, Strings in quotes).

 Expression Value

 3 + 3 * 8 - 2 ________________

 109 % 100 / 2 + 3 * 3 / 2.0 ________________

 1 - 3 / 6 * 2.0 + 14 / 5 ________________

 1 + "x" + 11 / 10 + " is" + 10 / 2 ________________

 10 % 8 * 10 % 8 * 10 % 8 ________________

2. Parameter Mystery, 12 points. Consider the following program.

 public class Mystery {
 public static void main(String[] args) {
 String she = "it";
 String it = "her";
 String her = "you";
 String you = "she";

 saying(you, it, you);
 saying(it, her, she);
 saying(she, "you", her);
 saying(it, "him", "fred");
 }

 public static void saying(String it, String her, String she) {
 System.out.println(she + " can't take " + it + " with " + her);
 }
 }

 List below the output produced by this program.

3. If/Else Simulation, 12 points. Consider the following method.

 public static void ifElseMystery(int a, int b) {
 if (a < b) {
 a++;
 }
 if (a < b || a % 2 == 1) {
 a++;
 } else {
 b++;
 }
 if (a >= b && a % 2 == 0) {
 b = b - 5;
 }
 System.out.println(a + " " + b);
 }

 For each call below, indicate what output is produced.

 Method Call Output Produced

 ifElseMystery(5, 15); _______________

 ifElseMystery(12, 5); _______________

 ifElseMystery(7, 8); _______________

 ifElseMystery(2, 3); _______________

 ifElseMystery(1, -2); _______________

 ifElseMystery(1, 1); _______________

4. While Loop Simulation, 12 points. Consider the following method:

 public static void mystery(int n) {
 int x = 1;
 int y = 1;
 while (n > 2) {
 x = x + y;
 y = x - y;
 n--;
 }
 System.out.println(x);
 }

 For each call below, indicate what output is produced.

 Method Call Output Produced

 mystery(1); _______________

 mystery(3); _______________

 mystery(5); _______________

 mystery(7); _______________

5. Assertions, 15 points. You will identify various assertions as being either
 always true, never true or sometimes true/sometimes false at various points
 in program execution. The comments in the method below indicate the points
 of interest.

 public static int mystery(int n) {
 int x = 2;
 // Point A
 while (x < n) {
 // Point B
 if (n % x == 0) {
 n = n / x;
 x = 2;
 // Point C
 } else {
 x++;
 // Point D
 }
 }
 // Point E
 return n;
 }

 Fill in the table below with the words ALWAYS, NEVER or SOMETIMES.

 x > 2 x < n n % x == 0
 +---------------------+---------------------+---------------------+
 Point A | | | |
 +---------------------+---------------------+---------------------+
 Point B | | | |
 +---------------------+---------------------+---------------------+
 Point C | | | |
 +---------------------+---------------------+---------------------+
 Point D | | | |
 +---------------------+---------------------+---------------------+
 Point E | | | |
 +---------------------+---------------------+---------------------+

6. Programming, 10 points. Write a static method called checkPrime that takes
 an integer n as a parameter and that checks how many factors n has,
 returning true if it is prime (exactly 2 factors) and returning false
 otherwise. Recall that a factor is a number between 1 and n that goes
 evenly into n and that prime numbers are those that have exactly two
 factors (1 is not a prime). So if we make the following call:

 boolean test = checkPrime(24);

 The method should produce the following two lines of output:

 factors of 24 = 1, 2, 3, 4, 6, 8, 12, 24
 Total factors = 8

 and the variable test would be set to false because this number does not
 have exactly 2 factors. Below are three other sample calls:

 checkPrime(1) checkPrime(5) checkPrime(25)
 --
 factors of 1 = 1 factors of 5 = 1, 5 factors of 25 = 1, 5, 25
 Total factors = 1 Total factors = 2 Total factors = 3

 returns false returns true returns false

 Notice that for these examples the method returns true only for 5 because it
 is the only prime. You must exactly reproduce the format of these logs.
 You may assume that the value passed to your method is greater than 0.

7. File Processing, 10 points. Write a static method called printDuplicates
 that takes an input scanner as a parameter and that examines the tokens in
 the scanner, printing tokens that are duplicated sequentially. Your method
 should examine the tokens looking for consecutive occurrences of the same
 token, printing each duplicated token along with how many times it appears
 consecutively. Non-repeated tokens are not printed. For example, if a
 scanner called input contains the following tokens:

 hello how how are you you you you I I I am Jack's Jack's smirking
 smirking smirking smirking smirking revenge bow wow wow yippee yippee
 yo yippee yippee yay yay yay one fish two fish red fish blue fish

 and we make the following call:

 printDuplicates(input);

 then the method would produce the following output:

 how*2
 you*4
 I*3
 Jack's*2
 smirking*5
 wow*2
 yippee*2
 yippee*2
 yay*3

 You are to exactly reproduce the format of this output. You may assume that
 the scanner contains at least one token of input. Notice that line breaks
 in the input are not meaningful. You may not construct any extra data
 structures to solve this problem.

8. Arrays, 10 points. Write a static method called isPairwiseSorted that takes
 an array of integers as a parameter and that returns whether or not the
 array is pairwise sorted. An array is considered to be pairwise sorted if
 it contains a sequence of pairs where each pair is in sorted (nondecreasing)
 order. For example, if a variable list is defined as follows:

 int[] list = {3, 8, 2, 15, -3, 5, 2, 3, 4, 4};
 | | | | | | | | | |
 +--+ +--+ +--+ +--+ +--+
 pair pair pair pair pair

 then the call isPairwiseSorted(list) would return true because the array is
 composed of a sequence of pairs that are each in sorted order ((3, 8)
 followed by (2, 15), followed by (-3, 5), and so on). If the array has an
 odd length, then your method should ignore the value at the end. Below are
 several examples of what value would be returned for a given array.

 Array passed as parameter Value Returned
 -------------------------------------- --------------
 {} true
 {6} true
 {4, 12} true
 {8, 5} false
 {6, 12, 4} true
 {3, 8, 2, 15, -3, 5, 2, 3, 4, 4, 3, 1} false
 {8, 13, 92, 92, 4, 4, 1} true
 {1, 3, 5, 7, 9, 8} false

 You may not construct any extra data structures to solve this problem.

9. Programming, 9 points. Write a static method called samePattern that
 returns true or false depending upon whether two strings have the same
 pattern of characters. More precisely, two strings have the same pattern if
 they are of the same length and if two characters in the first string are
 equal if and only if the characters in the corresponding positions in the
 second string are also equal. Below are some examples of patterns that are
 the same and patterns that differ (keep in mind that the method should
 return the same value no matter what order the two strings are passed).

 1st String 2nd String Same Pattern?
 ------------ -------------- -------------
 "" "" true
 "a" "x" true
 "a" "ab" false
 "ab" "ab" true
 "aa" "xy" false
 "aba" "+-+" true
 "---" "aba" false
 "abcabc" "zodzod" true
 "abcabd" "zodzoe" true
 "abcabc" "xxxxxx" false
 "aaassscccn" "aaabbbcccd" true
 "asasasasas" "xyxyxyxyxy" true
 "ascneencsa" "aeiouuoiea" true
 "aaassscccn" "aaabbbcccd" true
 "asasasasas" "xxxxxyyyyy" false
 "ascneencsa" "aeiouaeiou" false
 "aaassscccn" "xxxyyyzzzz" false
 "aaasssiiii" "gggdddfffh" false

 Your method should take two parameters: the two strings to compare. You are
 allowed to create new strings, but otherwise you are not allowed to
 construct extra data structures to solve this problem (no array, ArrayList,
 Scanner, etc). You are limited to the string methods on the cheat sheet.

