
                          CSE143X Midterm, Fall 2020 
 
This is a closed-book/closed-note exam.  There is a "cheat sheet" at the end. 
You are not allowed to access the internet or other sources during the exam. 
 
You are allowed to abbreviate "Always", "Never," and "Sometimes" as "A", "N", 
and "S" for the assertions question. 
 
You are NOT to use any electronic devices while taking the test, including 
calculators. 
 
Give yourself 75 minutes to complete the exam and then scan it (preferably as a 
pdf) and upload it to the course web page. 
 
1. Expressions, 10 points.  For each expression in the left-hand column, 
   indicate its value in the right-hand column.  Be sure to list a constant of 
   appropriate type (e.g., 7.0 rather than 7 for a double, Strings in quotes). 
 
        Expression                                   Value 
 
        3 * (5 - 2) - 3 - 2 * 2                ________________ 
 
        4 * 7 % 8 + 132 % 10 + 3 % 4           ________________ 
 
        27 / 5 / 2 + 3.4 * 2 - 1.1 * 2         ________________ 
 
        9 + 9 + "9 + 9" + 9 + 9                ________________ 
 
        19 / 2 / 2.0 + 2.5 * 6 / 2 + 0.5 * 4   ________________ 
 
2. Parameter Mystery, 12 points.  Consider the following program. 
 
    public class ParameterMystery { 
        public static void main(String[] args) { 
            String literal = "8"; 
            String brace = "semi"; 
            String paren = brace; 
            String semi = "brace"; 
            String java = "42"; 
             
            param(java, brace, semi); 
            param(literal, paren, java); 
            param(brace, semi, "literal"); 
            param("cse", literal + 4, "1"); 
        } 
         
        public static void param(String semi, String java, String brace) { 
            System.out.println(java + " missing " + brace + " and a " + semi); 
        } 
    } 
 
   List below the output produced by this program. 
 



 
3. If/Else Simulation, 12 points.  Consider the following method. 
 
        public static void ifElseMystery(int a, int b) { 
            if (a == b || b > 2) { 
                a++; 
                b = b + 3; 
            } else { 
                b++; 
            } 
            if (a < b && a % 2 == 1) { 
                a++; 
                b = a - 2; 
            } else if (b % 2 == 0) { 
                a = a - 2; 
                b = a + 3; 
            } 
            System.out.println(a + " " + b); 
        } 
 
   For each call below, indicate what output is produced. 
 
        Method Call               Output Produced 
 
        ifElseMystery(2, 2);      _______________ 
 
        ifElseMystery(3, 1);      _______________ 
 
        ifElseMystery(4, 0);      _______________ 
 
        ifElseMystery(5, 3);      _______________ 
 
        ifElseMystery(1, 2);      _______________ 
 
        ifElseMystery(7, 4);      _______________ 
 
 
 
 
4. While Loop Simulation, 12 points.  Consider the following method: 
 
        public static void mystery(int z) { 
            int x = 1; 
            int y = 1; 
            while (z > 1) { 
                x++; 
                y = y * 2; 
                z = z / 2; 
            } 
            System.out.println(x + " " + y); 
        } 
 
   For each call below, indicate what output is produced. 
 
        Method Call             Output Produced 
 
        mystery(1);             _______________ 
 
        mystery(5);             _______________ 
 
        mystery(10);            _______________ 
 
        mystery(42);            _______________ 



 
5. Assertions, 15 points.  You will identify various assertions as being either 
   always true, never true or sometimes true/sometimes false at various points 
   in program execution.  The comments in the method below indicate the points 
   of interest. 
 
        public static void mystery(Scanner console) { 
            int x = 3; 
            int y = 0; 
            // Point A 
            while (x > 0) { 
                // Point B 
                x = console.nextInt(); 
                y++; 
                if (x > 0) { 
                    x = -x; 
                    // Point C 
                } 
                // Point D 
                x = -x; 
            } 
            // Point E 
            System.out.println("y = " + y); 
        } 
         
   Fill in the table below with the words ALWAYS, NEVER or SOMETIMES. 
 
                     x > 0                x == 0                y == 0 
            +---------------------+---------------------+---------------------+ 
    Point A |                     |                     |                     | 
            +---------------------+---------------------+---------------------+ 
    Point B |                     |                     |                     | 
            +---------------------+---------------------+---------------------+ 
    Point C |                     |                     |                     | 
            +---------------------+---------------------+---------------------+ 
    Point D |                     |                     |                     | 
            +---------------------+---------------------+---------------------+ 
    Point E |                     |                     |                     | 
            +---------------------+---------------------+---------------------+ 



 
6. Programming, 10 points.  Write a static method called spinWheel that takes a 
   Random object and an integer n as parameters and that simulates the spinning 
   of a wheel until the number 20 comes up n times in a row.  On the wheel are 
   the numbers 20, 30, 40, 50, and 60 and each number should be equally likely 
   to come up when the wheel is spun.  Your method should report the individual 
   spins as well as indicating how many times it takes to get n occurrences of 
   20 in a row.  For example, below are two sample calls: 
 
          Random r = new Random(); 
          spinWheel(r, 2); 
          spinWheel(r, 3); 
 
   The first call should produce two lines of output like this: 
 
        spins: 40, 40, 50, 20, 50, 50, 40, 20, 30, 40, 50, 20, 20 
        2 in a row after 13 spins 
 
   The second call should produce two lines of output like this: 
 
        spins: 50, 50, 50, 20, 40, 20, 40, 20, 20, 20 
        3 in a row after 10 spins 
 
   Notice that the spin values are separated by commas and that the method 
   stops when it has seen n occurrences of the value 20 in a row.  You are to 
   exactly reproduce the format of these logs, although the specific numbers 
   will differ because of the use of a Random object.  You may assume that the 
   value n passed to your method is greater than or equal to 1. 



 
7. File Processing, 10 points.  Write a static method called printFigure 
   that takes an input scanner as a parameter and that prints a figure using 
   the data from the scanner.  The data in the scanner is line-based.  Each 
   line has a sequence of count/text pairs.  These pairs are used to produce a 
   complete line of output.  For example, this input line: 
 
        4 * 3 <> 5 (..) 
 
   indicates 4 occurrences of an asterisk followed by 3 occurrences of "<>" 
   followed by 5 occurrences of "(..)", which would produce this output: 
 
        ****<><><>(..)(..)(..)(..)(..) 
 
   The text to print for a given pair will always be a single token.  This 
   causes a problem for printing spaces because a space won't be recognized as 
   a token.  The special token "space" is used to indicate an actual space. 
   For example, if a scanner called input contains the following data: 
 
        1 + 6 =* 1 + 
        1 | 2 space 1 /\ 4 . 1 /\ 2 space 1 | 
        1 | 1 space 2 /\ 2 . 2 /\ 1 space 1 | 
        1 | 6 /\ 1 | 
        1 + 6 =* 1 + 
 
   and we make the following call: 
 
        printFigure(input); 
 
   then the method would produce the following output: 
 
        +=*=*=*=*=*=*+ 
        |  /\..../\  | 
        | /\/\../\/\ | 
        |/\/\/\/\/\/\| 
        +=*=*=*=*=*=*+ 
 
   Notice that the token "space" indicates actual spaces in the output.  A 
   blank line in the input should produce a blank line of output.  You may 
   assume that the input is legal and that none of the counts is negative.  You 
   may not construct any extra data structures to solve this problem. 



 
8. Arrays, 10 points.  Write a static method called numUnique that takes a 
   sorted array of integers as a parameter and that returns the number of 
   unique values in the array.  The array is guaranteed to be in sorted order, 
   which means that duplicates will be grouped together.  For example, if a 
   variable called "list" stores the following values: 
 
        [5, 7, 7, 7, 8, 22, 22, 23, 31, 35, 35, 40, 40, 40, 41] 
 
   then the following call: 
 
        numUnique(list) 
 
   should return 9 because this list has 9 unique values (5, 7, 8, 22, 23, 31, 
   35, 40 and 41).  It is possible that the list might not have any 
   duplicates.  For example if list instead stored this sequence of values: 
 
        [1, 2, 11, 17, 19, 20, 23, 24, 25, 26, 31, 34, 37, 40, 41] 
 
   then a call on the method would return 15 because this list contains 15 
   different values. 
 
   If passed an empty list, your method should return 0.  Remember that you can 
   assume that the values in the array appear in sorted (nondecreasing) order. 
 
   You may not construct any extra data structures to solve this problem and 
   your method should not alter the array passed as a parameter. 



 
9. Programming, 9 points.  Write a static method called numWords that takes a 
   String as a parameter and that returns the number of words in the String. 
   By definition, words are separated by one or more spaces.  The table below 
   shows several sample calls and the value that should be returned. 
 
        Method Call                                             Value Returned 
        ----------------------------------------------------    -------------- 
        numWords("how    many   words   here?")                       4 
        numWords("to be or not to be, that is the question")          10 
        numWords("  how  about  merry-go-round     ")                 3 
        numWords(" !&$%--$$!!*()   foo_bar_baz   ")                   2 
        numWords("x")                                                 1 
        numWords("     ")                                             0 
        numWords("")                                                  0 
 
   Notice that words can contain punctuation marks.  Any non-empty sequence of 
   non-space characters can be a word.  Also notice that there might be spaces 
   at the beginning or end of the String. 
 
   You may not construct any other objects to solve this problem (e.g., you 
   can't use a Scanner or tokenizer) and you are limited to the String methods 
   listed on the cheat sheet.  You may assume that the string has no other 
   whitespace characters such as tabs or newline characters.  Your method can 
   pay attention just to spaces to decide how many words there are. 



CSE 143X Midterm Cheat Sheet 
Syntax templates 
for (initialization; test; update) { 

statement(s); 
} 
 
if (test) { 
    statement(s); 
} else { 
    statement(s); 
} 
 
if (test) { 
    statement(s); 
} else if (test) { 
    statement(s); 
} else { 
    statement(s); 
} 
 
while (condition) { 
    statement(s); 
} 

public static void name(parameters) { 
    statement(s); 
} 
 
public static type name(parameters) { 
    statement(s); 
    ... 
    return expression; 
} 
 
for (int i = 0; i < array.length; i++) { 
    do something with array[i]; 
    ... 
} 
 
for (int i = 0; i < string.length(); i++) 
{ 
    do something with string.charAt(i); 
    ... 
} 

 

Math Method Description  Random Method Description 
Math.abs(value) absolute value  nextInt(max) random integer from 0 to max-1 
Math.min(v1, v2) smaller of two values  Construction Examples 
Math.max(v1, v2) larger of two values  int[] data = new int[10]; 
Math.round(value) nearest whole number  Random r = new Random(); 

Math.pow(b, e) b to the e power  Scanner console = new Scanner(System.in); 
 

String Method Description 
contains(str) true if this string contains the other's characters inside it 
endsWith(str), startsWith(str) true if this string starts/ends with the other's characters 
equals(str) true if this string is the same as str 
equalsIgnoreCase(str) true if this string is the same as str, ignoring capitalization 
indexOf(str) index in this string where given string begins (-1 if not found) 
length() number of characters in this string 
substring(i, j) characters in this string from index i (inclusive) to j (exclusive) 
toLowerCase(), toUpperCase() a new string with all lowercase or uppercase letters 
charAt(i) returns char at index i 
 

Scanner Method Description 
nextInt(), hasNextInt() read/return token as int and test if reading will succeed 
next(), hasNext() read/return token as String and test if reading will succeed 
nextDouble(), hasNextDouble() read/return token as double and test if reading will succeed 
nextLine(), hasNextLine() read/return line as String and test if reading will succeed 
 

Operator Description    
< less than  Operator Description 
<= less than or equal  && and 
> greater than  || or 
>= greater or equal  ! not 
== equal    
!= not equal    

 


