
 CSE143X Final, Fall 2020

This is a closed-book/closed-note exam. There is a "cheat sheet" at the end.
You are not allowed to access the internet or other sources during the exam.

You are NOT to use any electronic devices while taking the test, including
calculators.

Give yourself 110 minutes to complete the exam and then scan it (preferably as
a pdf) and upload it to the course web page.

1. Binary Tree Traversals, 6 points. Consider the following tree.

 +---+
 | 7 |
 +---+
 / \
 / \
 +---+ +---+
 | 2 | | 9 |
 +---+ +---+
 / \ / \
 / \ / \
 +---+ +---+ +---+ +---+
 | 3 | | 4 | | 6 | | 0 |
 +---+ +---+ +---+ +---+
 \ \ /
 \ \ /
 +---+ +---+ +---+
 | 8 | | 1 | | 5 |
 +---+ +---+ +---+

 Fill in each of the traversals below:

 Preorder traversal __

 Inorder traversal __

 Postorder traversal __

2. Recursive Programming, 9 points. Write a recursive method called digitMatch
 that takes two nonnegative integers as parameters and that returns the
 number of digits that match between them. Two digits match if they are
 equal and have the same relative position starting from the end of the
 number (i.e., starting with the ones digit). In other words, the method
 should compare the last digits of each number, the second-to-last digits of
 each number, the third-to-last digits of each number, and so forth, counting
 how many pairs match. For example, digitMatch(1072503891, 62530841) would
 compare as follows:

 1 0 7 2 5 0 3 8 9 1
 | | | | | | | |
 6 2 5 3 0 8 4 1

 The method should return 4 in this case because 4 of these pairs match (2-2,
 5-5, 8-8, and 1-1). Below are more examples:

 Method call Result Method call Result
 -------------------------------- --------------------------------
 digitMatch(38, 34) 1 digitMatch(5, 5552) 0
 digitMatch(892, 892) 3 digitMatch(1234567, 67) 2
 digitMatch(298892, 7892) 3 digitMatch(380, 0) 1
 digitMatch(123456, 654321) 0 digitMatch(0, 4) 0
 digitMatch(42, 24) 0 digitMatch(0, 0) 1

 Your method should throw an IllegalArgumentException if either of the two
 parameters is negative. You are not allowed to construct any structured
 objects to solve this problem (no array, String, StringBuilder, ArrayList,
 etc) and you may not use a while loop, for loop or do/while loop to solve
 this problem; you must use recursion.

3. Details of inheritance, 10 points. Assuming that the following classes have
 been defined:

 public class Fork extends Pot {
 public void method2() {
 System.out.println("Fork 2");
 super.method2();
 }
 }

 public class Pot {
 public void method2() {
 System.out.println("Pot 2");
 }

 public void method3() {
 System.out.println("Pot 3");
 method2();
 }
 }

 public class Bowl extends Fork {
 public void method1() {
 System.out.println("Bowl 1");
 }

 public void method2() {
 System.out.println("Bowl 2");
 }
 }

 public class Spoon extends Pot {
 public void method1() {
 System.out.println("Spoon 1");
 }

 public void method2() {
 System.out.println("Spoon 2");
 }
 }

And assuming the following variables have been defined:

 Pot var1 = new Spoon();
 Bowl var2 = new Bowl();
 Pot var3 = new Bowl();
 Pot var4 = new Pot();
 Object var5 = new Bowl();
 Pot var6 = new Fork();

In the table below, indicate in the right-hand column the output produced by
the statement in the left-hand column. If the statement produces more than one
line of output, indicate the line breaks with slashes as in "a/b/c" to indicate
three lines of output with "a" followed by "b" followed by "c". If the
statement causes an error, fill in the right-hand column with either the phrase
"compiler error" or "runtime error" to indicate when the error would be
detected.

 Statement Output
 --

 var1.method2(); ____________________________

 var2.method2(); ____________________________

 var3.method2(); ____________________________

 var4.method2(); ____________________________

 var5.method2(); ____________________________

 var6.method2(); ____________________________

 var1.method1(); ____________________________

 var2.method1(); ____________________________

 var3.method1(); ____________________________

 var1.method3(); ____________________________

 var2.method3(); ____________________________

 var3.method3(); ____________________________

 var4.method3(); ____________________________

 ((Spoon)var1).method1(); ____________________________

 ((Bowl)var3).method1(); ____________________________

 ((Fork)var3).method3(); ____________________________

 ((Fork)var5).method1(); ____________________________

 ((Spoon)var5).method1(); ____________________________

 ((Fork)var6).method2(); ____________________________

 ((Bowl)var6).method3(); ____________________________

4. Stacks/Queues, 10 points. Write a method called alternatingReverse that
 takes a stack of integers as a parameter and that rearranges the values so
 that every other value starting from the bottom of the stack is reversed in
 order. For example, if a variable s stores these values:

 bottom [1, 2, 3, 4, 5, 6, 7, 8] top
 ^ ^ ^ ^
 | | | |
 +-----+-----+-----+
 sequence to reverse

 Starting from the bottom of the stack and looking at every other value, we
 find the sequence of numbers 1, 3, 5, 7. This sequence should be reversed
 while the other values should stay in the same positions. If we make the
 following call:

 alternatingReverse(s);

 the stack should store the following values after the call:

 bottom [7, 2, 5, 4, 3, 6, 1, 8] top
 ^ ^ ^ ^
 | | | |
 +-----+-----+-----+
 reversed sequence

 This example uses sequential integers to make it easier to see the sequence,
 but you should not assume anything about the sequence. For example, if s
 instead stored this sequence:

 bottom [7, 1, 4, 18, 23, 0, -5, 12] top

 then after the method is called, it would store this sequence:

 bottom [-5, 1, 23, 18, 4, 0, 7, 12] top

 Your method should throw an IllegalArgumentException if the number of
 elements in the stack is not an even number.

 You are to use one queue as auxiliary storage to solve this problem. You
 may not use any other auxiliary data structures to solve this problem,
 although you can have as many simple variables as you like. You also may
 not solve the problem recursively. Your solution must run in O(n) time
 where n is the size of the stack. Use the Stack and Queue structures
 described in the cheat sheet and obey the restrictions described there
 (recall that you can't use the peek method or a foreach loop or iterator).

 Space is provided on the next page for your answer.

 Please write your answer to alternatingReverse below.

5. Collections Programming, 5 points. Write a method called acronymFor that
 takes a list of strings as a parameter and that returns the corresponding
 acronym. You form an acronym by combining the capitalized first letter of a
 series of words. For example, the list [laughing, out, loud] produces the
 acronym "LOL". The list [Computer, Science and, Engineering] produces the
 acronym "CSE". You may assume that all of the strings are nonempty. Your
 method is not allowed to change the list passed to it as a parameter. If
 passed an empty list, your method should return the empty string.

 You may construct iterators and strings, but you are not allowed to
 construct other structured objects (no set, list, stack, queue, etc.).

6. Binary Trees, 10 points. Write a method called hasPathSum that takes an
 integer n as a parameter and that returns true if there is some nonempty
 path from the overall root of a tree to a node of the tree in which the sum
 of the data stored in the nodes adds up to n (returning false if no such
 path exists). For example if the variable t refers to the following tree:
 +----+
 | 5 |
 +----+
 / \
 +----+ +----+
 | 1 | | 21 |
 +----+ +----+
 / \ \
 +----+ +----+ +----+
 | -9 | | 2 | | 20 |
 +----+ +----+ +----+
 / \ / \
 +----+ +----+ +----+ +----+
 | 3 | | 30 | | 13 | | 4 |
 +----+ +----+ +----+ +----+
 Below are various calls and an explanation for the value returned:
 t.hasPathSum(8) returns true because of the path (5, 1, 2)
 t.hasPathSum(26) returns true because of the path (5, 21)
 t.hasPathSum(0) returns true because of the path (5, 1, -9, 3)
 t.hasPathSum(5) returns true because of the path (5)
 t.hasPathSum(1) returns false because no path with that sum exists
 You are writing a public method for a binary tree class defined as follows:
 public class IntTreeNode {
 public int data; // data stored in this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 <constructors>
 }

 public class IntTree {
 private IntTreeNode overallRoot;

 <methods>
 }
 You are writing a method that will become part of the IntTree class. You
 may define private helper methods to solve this problem, but otherwise you
 may not call any other methods of the class. You may not construct any
 extra data structures to solve this problem.

7. Collections Programming, 10 points. Write a method called acronyms that
 takes a set of word lists as a parameter and that returns a map whose keys
 are acronyms and whose values are the word lists that produce that acronym.
 Acronyms are formed from each list as described in problem 4. Recall that
 the list [laughing, out, loud] produces the acronym "LOL". The list
 [League, of, Legends] also produces the acronym "LOL". Suppose that a
 variable called lists stores this set of word lists:

 [[attention, deficit], [Star, Trek, Next, Generation],
 [laughing, out, loud], [International, Business, Machines],
 [League, of, Legends], [anno, domini], [art, director],
 [Computer, Science and, Engineering]]

 Each element of this set is a list of values of type String. You may assume
 that each list is nonempty and that each string in a list is nonempty.

 Your method should construct a map whose keys are acronyms and whose values
 are sets of the word lists that produce that acronym. For example, the call
 acronyms(lists) should produce the following map:

 {AD=[[attention, deficit], [anno, domini], [art, director]],
 CSE=[[Computer, Science and, Engineering]],
 IBM=[[International, Business, Machines]],
 LOL=[[laughing, out, loud], [League, of, Legends]],
 STNG=[[Star, Trek, Next, Generation]]}

 Notice that there are 5 unique acronyms produced by the 8 lists in the set.
 Each acronym maps to a set of the word lists for that acronym. Your method
 should not make copies of the word lists; the sets it constructs should
 store references to those lists. As in the example above, the keys of the
 map that you construct should be in sorted order. You may assume that a
 working version of acronymFor as described in problem 4 is available for you
 to use no matter what you wrote for problem 4. Your method is not allowed
 to change either the set passed as a parameter or the lists within the set.

8. Comparable class, 10 points. Write a class called ItemOrder that stores
 information about an item being ordered. Each ItemOrder object keeps track
 of its item number (a string), an integer quantity, and a price per item
 expressed as an integer number of pennies. For example:
 ItemOrder item = new ItemOrder("007", 3, 36);
 Notice that the quantity is passed as a parameter before the price in the
 constructor, so this indicates an order for item number 007 with a quantity
 of 3 at 36 cents each. The total price for this order would be 108 cents.
 The class should include the following public methods:
 getPrice() returns the total price for this order in pennies
 toString() returns a String representation of the order
 Below is a pattern for formatting the toString result.
 item #<item>: <quantity>@$<price per> = $<total price>
 For example, given the variable defined above, item.toString() should
 return "item #007: 3@$0.36 = $1.08". Notice that prices are expressed as
 dollars and cents in the usual format with 2 digits for pennies.

 The ItemOrder class should implement the Comparable<E> interface. Item
 orders should be ordered first by item number (sorted alphabetically) and
 then by total price (with lower total-priced orders appearing earlier).

9. Binary Trees, 15 points. Write a method called makeFull that turns a binary
 tree of integers into a full binary tree. A full binary tree is one in
 which every node has either 0 or 2 children. Your method should produce a
 full binary tree by replacing each node that has one child with a new node
 that has the old node as a leaf where there used to be an empty tree. The
 new node should store a value that indicates the level of the tree (-1 for
 the first level of the tree, -2 for the second level of the tree, and so
 on). For example, if a tree called t stores the following:
 +----+
 | 12 |
 +----+
 /
 +----+
 | 29 |
 +----+
 and we make the call:
 t.makeFull();
 then the tree should store the following after the call:
 +----+
 | -1 |
 +----+
 / \
 +----+ +----+
 | 29 | | 12 |
 +----+ +----+
 Notice that the node storing 12 that used to be at the top of the tree is
 now a leaf where there used to be an empty tree. In its place at the top of
 the tree is a new node that stores the value -1 to indicate that it was
 added at level 1 of the tree. Your method should perform this operation
 at every level of the tree. For example, if t had instead stored:
 +----+
 | 12 |
 +----+
 / \
 +----+ +----+
 | 28 | | 19 |
 +----+ +----+
 / /
 +----+ +----+
 | 94 | | 32 |
 +----+ +----+
 / \ \
 +----+ +----+ +----+
 | 65 | | 18 | | 72 |
 +----+ +----+ +----+
 then after the call it would store:
 +----+
 | 12 |
 +----+
 / \
 +----+ +----+
 | -2 | | -2 |
 +----+ +----+
 / \ / \
 +----+ +----+ +----+ +----+
 | 94 | | 28 | | -3 | | 19 |
 +----+ +----+ +----+ +----+
 / \ / \
 +----+ +----+ +----+ +----+
 | 65 | | 18 | | 32 | | 72 |
 +----+ +----+ +----+ +----+
<continued on next page>

 Notice that two nodes were added at level 2, and one at level 3.

 You are writing a public method for a binary tree class defined as follows:

 public class IntTreeNode {
 public int data; // data stored in this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 // post: constructs an IntTreeNode with the given data and links
 public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {
 this.data = data;
 this.left = left;
 this.right = right;
 }
 }

 public class IntTree {
 private IntTreeNode overallRoot;

 <methods>
 }

 You are writing a method that will become part of the IntTree class. You
 may define private helper methods to solve this problem, but otherwise you
 may not assume that any particular methods are available. YOU ARE NOT TO
 CHANGE THE DATA FIELD OF THE EXISTING NODES IN THE TREE (what we called
 You will, however, construct new nodes containing negative values to be
 inserted into the tree (notice that there is only one constructor for
 nodes). You will also change the links of the tree to restructure the tree
 as described. Your solution must run in O(n) time where n is the number of
 nodes in the tree.

10. Linked Lists, 15 points. Write a method of the LinkedIntList class called
 switchEvens that takes a second list of integers as a parameter and that
 switches values in even numbered positions between the first and second
 lists. For example, if the variables list1 and list2 store the following:

 list1 = [3, 9, 5, 4, 2]
 list2 = [7, 1, 0, 6, 18, 12, 8]

 and you make the following call:

 list1.switchEvens(list2);

 The method switches the values at index 0 (3 and 7), the values at index 2
 (5 and 0), and the values at index 4 (2 and 18), as indicated below:

 list1 = [3, 9, 5, 4, 2]
 | | |
 list2 = [7, 1, 0, 6, 18, 12, 8]

 After the method is called, the lists should store the following values:

 list1 = [7, 9, 0, 4, 18]
 list2 = [3, 1, 5, 6, 2, 12, 8]

 Notice that it doesn't matter whether the numbers themselves are even but
 whether they appear in even positions. Also notice that if one list is
 longer than the other, then the values that don't have corresponding
 entries in the shorter list are left unchanged.

 You are writing a public method for a linked list class defined as follows:

 public class ListNode {
 public int data; // data stored in this node
 public ListNode next; // link to next node in the list

 <constructors>
 }

 public class LinkedIntList {
 private ListNode front;

 <methods>
 }

 You are writing a method that will become part of the LinkedIntList class.
 Both lists are of type LinkedIntList. You may define private helper
 methods to solve this problem, but otherwise you may not assume that any
 particular methods are available. You are allowed to define your own
 variables of type ListNode, but you may not construct any new nodes, and
 you may not use any auxiliary data structure to solve this problem (no
 array, ArrayList, stack, queue, String, etc). You also may not change any
 data fields of the nodes. You MUST solve this problem by rearranging the
 links of the list.

 Write your solution to switchEvens on the next page.

 Write your solution to switchEvens below.

11. Fiction, 1 point (bonus). Your TA has woken up in jail. Explain why. You
 may express your answer in any way you choose by writing a story, drawing a
 picture, writing a poem, etc. If your answer below indicates at least 1
 minute of effort, you will receive full credit, although your TA would
 probably appreciate it if you put in a little more effort.

CSE143X Cheat Sheet

Linked Lists (16.2)
Below is an example of a method that could be added to
the LinkedIntList class to compute the sum of the list:

public int sum() {
 int sum = 0;
 ListNode current = front;
 while (current != null) {
 sum += current.data;
 current = current.next;
 }
 return sum;
}

Math Methods (3.2) mathematical operations

Math.abs(value) absolute value
Math.min(v1, v2) smaller of two values
Math.max(v1, v2) larger of two values
Math.round(value) nearest whole number
Math.pow(b, e) b to the e power

Stacks and Queues (14.2) (LIFO and FIFO structures)
Queues should be constructed using the Queue<E> interface and the LinkedList<E> implementation. For
example, to construct a queue of String values, you would say:

Queue<String> q = new LinkedList<>();
Stacks should be constructed using the Stack<E> class (there is no interface):

Stack<String> s = new Stack<>();
For Stack<E>, you are limited to the following operations (no iterator or foreach loop):

push(value) pushes the given value onto the top of the stack
pop() removes and returns the top of the stack
isEmpty() returns true if this stack is empty
size() returns the number of elements in the stack

For Queue<E>, you are limited to the following operations (no iterator or foreach loop):
add(value) adds the given value at the end of the queue
remove() removes and returns the front of the queue
isEmpty() returns true if this queue is empty
size() returns the number of elements in the queue

Iterator<E> Methods (11.1) (An object that lets you examine the contents of any collection)
hasNext() returns true if there are more elements to be read from collection
next() reads and returns the next element from the collection
remove() removes the last element returned by next from the collection

List<E> Methods (10.1) (An ordered sequence of values)
add(value) appends value at end of list
add(index, value) inserts given value at given index, shifting subsequent values right
clear() removes all elements of the list
indexOf(value) returns first index where given value is found in list (-1 if not found)
get(index) returns the value at given index
remove(index) removes/returns value at given index, shifting subsequent values left
set(index, value) replaces value at given index with given value
size() returns the number of elements in list
isEmpty() returns true if the list’s size is 0
addAll(collection) adds all elements from the given collection to the end of the list
contains(value) returns true if the given value is found somewhere in this list
remove(value) finds and removes the given value from this list if it is present
removeAll(list) removes any elements found in the given collection from this list

iterator() returns an object used to examine the contents of the list

Set<E> Methods (11.2) (A fast-searchable set of unique values)
add(value) adds the given value to the set
contains(value) returns true if the given value is found in the set
remove(value) removes the given value from the set if it is present
clear() removes all elements of the set
size() returns the number of elements in the set
isEmpty() returns true if the set's size is 0
addAll(collection) adds all elements from the given collection to the set
containsAll(collection) returns true if set contains every element from given collection
removeAll(collection) removes any elements found in the given collection from this set
retainAll(collection) removes any elements not found in the given collection from this set
iterator() returns an object used to examine the contents of the set

Map<K, V> Methods (11.3) (A fast mapping between a set of keys and a set of values)
put(key, value) adds a mapping from the given key to the given value
get(key) returns the value mapped to the given key (null if none)
containsKey(key) returns true if the map contains a mapping for the given key
remove(key) removes any existing mapping for the given key
clear() removes all key/value pairs from the map
size() returns the number of key/value pairs in the map
isEmpty() returns true if the map's size is 0
keySet() returns a Set of all keys in the map
values() returns a Collection of all values in the map
putAll(map) adds all key/value pairs from the given map to this map

Point Methods (8.1) (an object for storing integer x/y coordinates)
Point(x, y) constructs a new point with given x/y coordinates
Point() constructs a new point with coordinates (0, 0)
getX() returns the x-coordinate of this point
getY() returns the y-coordinate of this point
equals(other) returns true if this Point stores the same x/y values as the other
translate(dx, dy) translates the coordinates by the given amount

String Methods (3.3) (An object for storing a sequence of characters)
length() returns the number of characters in the string
charAt(index) returns the character at a specific index
compareTo(other) returns how this string compares to the other
equals(other) returns true if this string equals the other
toUpperCase() returns a new string with all uppercase letters
toLowerCase() returns a new string with all lowercase letters
startsWith(other) returns true if this string starts with the given text

substring(start, stop) returns a new string composed of character from start index
(inclusive) to stop index (exclusive)

Collections Implementations
List<E> ArrayList<E> and LinkedList<E>
Set<E> HashSet<E> and TreeSet<E> (values ordered)
Map<K, V> HashMap<K, V> and TreeMap<K, V> (keys ordered)

