Building Java Programs

Inheritance and Polymorphism

It means I'm rewriting

: Just a second, i it should
Mercutio, do you Will. 'm refactoring some What does that mean? be:nmm litnsme ﬁrs't‘z\liaece

of my code. but it sounds cooler.

have a minute?

= —

Input and output streams

» stream: an abstraction of a source or target of data
8-bit bytes flow to (output) and from (input) streams

e can represent many data sources:

| Network

files on hard disk

another computer on network De'\zl\m s
Webpage 88888871”111”111”111
input device (keyboard, mouse, etc.) e

* represented by java.io classes
InputStream
G p RS e an

e ———

Recall: inheritance

* inheritance: Forming new classes based on existing ones.
a way to share/reuse code between two or more classes

superclass: Parent class being extended.

subclass: Child class that inherits behavior from superclass.
« gets a copy of every field and method from superclass

is-a relationship: Each object of the subclass also "is a(n)"
object of the superclass and can be treated as one.

Employee
20-page manual
FaS

Lawyer Secretary Marketer
2-page manual 1-page manual 3-page manual

T

LegalSecretary
1-page manual

A A

/

Streams and inheritance

e input streams extend common superclass InputStream;

output streams extend common superclass OutputStream

» guarantees that all sources of data have the same methods
» provides minimal ability to read/write one byte at a time

InputStream

read(): int
close()
FAY

|

AudiolnputStream

ByteArraylnputStream

FilelnputStream

FilterlnputStream ObjectinputStream

I

BufferedinputStream

DatalnputStream

InflaterinputStream

LineNumberinputStream

PushbackinputStream

T

GZIPInputStream

ZiplnputStream

JarlnputStream

e

Inheritance syntax

public class name extends superclass {

public class Lawyer extends Employee {

}

* override: To replace a superclass's method by writing a
new version of that method in a subclass.

public class Lawyer extends Employee {
// overrides getSalary method in Employee class;
// give Lawyers a $5K raise
public double getSalary () {
return 55000.00;

super keyword

e Subclasses can call inherited behavior with super

super . method (parameters)
super (parameters) ;

public class Lawyer extends Employee {
public Lawyer (int years) {
super (years); // calls Employee constructor

}

// give Lawyers a $5K raise

public double getSalary () {
double baseSalary = super.getSalary():;
return baseSalary + 5000.00;

}

Lawyers now always make $5K more than Employees.

I/O and exceptions

* exception: An object representing an error.

» checked exception: One that must be
handled for the program to compile.

* Many I/O tasks throw exceptions.
» Why?

* When you perform I/O, you must either:
» also throw that exception yourself
» catch (handle) the exception

Throwing an exception

public type hname (params) throws type {

* throws clause: Keywords on a method's header that state
that it may generate an exception.

Example:

public void processFile(String filename)
throws FileNotFoundException {

"I hereby announce that this method might throw an
exception, and I accept the consequences if it happens."”

Catching an exception

Eryeia
statement(s);
} catch (type name)
code to handle the exception

}

The try code executes. If the given exception occurs, the try
block stops running; it jumps to the catch block and runs
that.

try {
Scanner in = new Scanner (new File(filename)) ;
Systemvonbpraint in anput inextiane Gy

} catch (FileNotFoundException e) ({
System.out.println("File was not found.");

}

10

Exception inheritance

* Exceptions extend from a common superclass Exception

Exception

i
| | | | |

ClassNotFoundException DataFormatException IOException NoSuchMethodException RuntimeException SQLException

1[\ FAY
l [|

FileNotFoundException MalformedURLEXception SocketException

ArithmeticException ClassCastBException ConcurrentModificationException EmptyStackException
llegalArgumeniException lllegalStateException IndexOutOfBoundsException NoSuchElementException
NullPointerException SecurityException UnsupportedOperationException

11

e

‘Dealing with an exception

» All exception objects have these methods:

> —

Method Description
public String getMessage () text describing the error
public String toString () a stack trace of the line

numbers where error occurred
getCause (), getStackTrace (), other methods
printStackTrace ()

e Some reasonable ways to handle an exception:

try again; re-prompt user; print a nice error message;
quit the program; do nothing (!)

12

~ Inheritance and exceptions

* You can catch a general exception to handle any subclass:

try {
Scanner 1nput = new Scanner (new File("foo"));
System.out.println (input.nextLine())

} catch (Exception e) {
System.out.println("File was not found.");

}

e Similarly, you can state that a method throws any
exception:

public void foo () throws Exception ({

Are there any disadvantages of doing so?

13

The class Object

e The class Object forms the root of the
overall inheritance tree of all Java classes.

Every class is implicitly a subclass of object

* The Object class defines several methods
that become part of every class you write.
For example:

pllbivewsb i g oS R e
Returns a text representation of the object,
usually so that it can be printed.

Object

equals
finalize
getClass
hashCode
notify
notifyAll
toString
wait

A

[

Point

XYy

distance
getx

getY
setLocation
toString
translate

14

Object methods

method

description

protected Object clone ()

creates a copy of the object

public boolean equals (Object o)

returns whether two objects
have the same state

protected void finalize ()

used for garbage collection

pablrc Gl assdd>igetClass)

info about the object's type

public 1nt hashCode ()

a code suitable for putting this
object into a hash collection

public String toString()

text representation of object

public void notify ()
public void notifyAll ()
publicivord waiti()
YN S NG G N T~ 1 O il OB

methods related to
concurrency and locking (take
a data structures course!)

15

Using the Object class

* You can store any object in a variable of type Object.

Qb e cEolwnewmRodm Rl
@ b b el L o e

* You can write methods that accept an Object parameter.

public void checkNotNull (Object o) {
if (o != null) {
throw new IllegalArgumentException () ;

}

* You can make arrays or collections of Ob-jects.

Object[] a = new Object[5];

al0] = "hello";

all] = new Random() ;

Last<@Obayect >y st oTnew A rtavhrst cObyaat S

16

Recall: comparing objects

* The == operator does not work well with objects.
It compares references, not objects' state.
It produces true only when you compare an object to itself.

Point pl = new Point (5, 3);
Pornt paa—snew RPornt @by

I oIl N I S U
X s
pl
Ll plhi== p2iiis Talse
piphies R e Ralae
p e p2 sl
lmn s cetiaa D

i

p3 ~

// p2.equals (p3) -

17

Default equals method

* The Object class's equals implementation is very simple:

public class Object {

public boolean equals (Object o) {
return this == o;

}

e However:

When we have used equals with various objects, it didn't behave like
=== WhY Rot? iirfevi | aoialsfario)y]

The Java API documentation for equals is elaborate. Why?

18

Implementing equals

public boolean equals (Object name) {
statement(s) that return a boolean value ;

The parameter to equals must be of type Object.

Having an Ob-ject parameter means any object can be passed.

- If we don't know what type it is, how can we compare it?

19

Casting references

Object ol = new Point (5, -3);

Object 02 = "hello there";

O e ke
i e A Y e I
A B o A S T U S

int x = p.getX(); i oile

» (Casting references is different than casting primitives.
Really casting an object reference into a Point reference.
Doesn't actually change the object that is referred to.

Tells the compiler to assume that o1 refers to a Point object.

20

—— - ="

The instanceof keyword

if (variable instanceof type) {

statement(s);
}
expression result
o Asks if a variable refers S Lustanceor Fotnt folze
to an object of a given type Sl RSTTanc e oS T true
Used as a boolean test. B imrane o Beann true
pPramsTanceofSE g false
St ringy sh=sNhelihaie PevNetan e e o eiaeas true
Podnt wpo = new Pointe () s instanceof Object true
null instanceof false
SLEdTIg
null instanceof false
Object

21

e

equals method for Points

// Returns whether o refers to a Point object with
LloEhe same %,y coordinatesiag this i Point:
public boolean equals (Object o) {
1f (o instanceof Point) {
// o 1s a Point; cast and compare it

Point other = (Point) o;
return x == other.x && y == other.y;
} else {

WP e siite e e inloie o= To e L
return false;

22

More about equals

» Equality is expected to be reflexive, symmetric, and transitive:

a.equals (a) is true for every object a
a.equals (b) © b.equals (a)
(a.equals(b) && b.equals(c)) © a.equals (c)

* No non-null object is equal to null:

a.equals (null) is false for every object a

* Two sets are equal if they contain the same elements:

Set<String> setl = new HashSet<String> () ;

Set<String> setZ2 = new TreeSet<String> () ;

PO Sty ing s e havhoware s votos i B i
setl.add (s):; set2.add (s);

}
System.out.println (setl.equals (set2)) ; L e

Polymorphism

Polymorphism

o polymorphism: Ability for the same code to be used with different
types of objects and behave differently with each.

* A variable or parameter of type 7 can refer to any subclass of T.

Employee ed = new Lawyer();
Object otto = new Secretary():;

When a method is called on ed, it behaves as a Lawyer.

You can call any Employee methods on ed.
You can call any Object methods on otto.

« You can not call any Lawyer-only methods on ed (e.g. sue).
You can not call any Employee methods on otto (e.g. getHours).

25

Polymorphism examples

* You can use the object's extra functionality by casting.

Employee ed = new Lawyer ()
ed.getVacationDays () ;
ed.sue () ;

((Lawyer) ed) .sue();

//
i
.

ok

compller error
ok

* You can't cast an object into something that it is not.

Object otto = new Secretary();
SystenyemEaprinElntorEor oS tRrRgit
otto.getVacationDays () ;

((Employee) otto) .getVacationDays() ;
((Lawyer) otto) .sue ()

//
o
19
//

ok

compller error
ok

ranbimeverror

26

"Polymorphism mystery”

* Figure out the output from all methods of these classes:

public class Snow ({
e R B S N e I
SyvsbemvouEvpr e e NS oyt
}

Dl e e ol
Syelemveu i R e NS G S T
}

}

public class Rain extends Snow {
publresvordy method b ()
System.out.println("Rain 1");

}

publrervord method2 ()
Systemyoutvprrntin (YR 2y

}

"Polymorphism mystery”

public class Sleet extends Snow {
public void method2 () {
SYoren T outapranti it See gy
super .method?2 () ;
method3 () ;

}

Dl e e ol
System.out.println("Sleet 3");

}
}

public class Fog extends Sleet {
public void methodl () {
Sy stemyountvprrn Bl Rog il g
}

public voild method3 () ({
Sy stemsontiprintin (HFogi3tiv
}

Technique 1: diagram

» Diagram the classes from top (superclass) to bottom.

Snow
method?2
method3
Rain Sleet
method1 method?2
method2 method3
(method3) T
Fog
method1
(method?2)
method3

—_—

method Snow Rain Sleet Fog
methodl o B
method2 | Snow 2 RSN Sleet 2 Sleet 2
Snow 2 Snow Z2
method3 () method3 ()
method3 | Snow 3 SHOW > Sleet 3 Fog 3

Italic - inherited behavior
Bold - dynamic method call

30

Mystery problem, no cast

Snow var3 = new Rain () ;
DB R e LR R // What's the output?

e If the problem does not have any casting, then:

Look at the variable's type.
If that type does not have the method: ERROR.

Execute the method, behaving like the object's type.
(The variable type no longer matters in this step.)

31

Example 1

e What is the output of the following call?

variable
Snow varl = new Sleet|(); Snow
varl.method?2 () ;
method?2
method3
e Answer: A .
object
S Rain Sleet
Snow 2 method1 method2
method?2 method3
olect (method3) T
Fog
method1
(method?2)
method3

Example 2

e What is the output of the following call?

variable
Snow var?2 = new Rain|(); Snow
varZ.methodl () ;
method2
method3
e Answer: : 4
object
ERROR Rain Sleet
(because snow does not method1 method?2
method2 method3
have @ methodl) methodd) T
Fog
method1
(method?2)

method3

33

Mystery problem with cast

Snow varZ2 = new Rain () ;
((Sleet) var?2) method2(); // What's the output?

» If the problem does have a type cast, then:

Look at the cast type.
If that type does not have the method: ERROR.

Make sure the object's type is the cast type or is a subclass of the cast
type. If not: ERROR. (No sideways casts!)

Execute the method, behaving like the object's type.
(The variable / cast types no longer matter in this step.)

34

Example 3

e What is the output of the following call?

Snow var?

((Rain) var2) .methodl () ;

e Answer:

Ra g

variable
= new Rain() ~ Snow
method?2
method3
cast 7
object
Rain Sleet
method1 method?2
method?2 method3
(method3) T
Fog
method1
(method?2)

method3

35

Example 4

e What is the output of the following call?

variable
Snow var?Z2 = new Rain(); Show
((Sleet) wvar2) .method2():;
method2
method3
* Answer: : 4
object cast
ERROR Rain Sleet
(because the object's method1 method?2
type, Rain, cannot method2 method3
be cast into S1leet) (methods) T
Fog
method1
(method?2)
method3

36

