


2 

The "8 Queens" problem 
�  Consider the problem of trying to place 8 queens on a 

chess board such that no queen can attack another queen. 

�  What are the "choices"? 

�  How do we "make" or 
"un-make" a choice? 

�  How do we know when 
to stop? 

Q 

Q 

Q 

Q 

Q 

Q 

Q 

Q 



3 

Naive algorithm 
�  for (each square on board): 

�  Place a queen there. 
�  Try to place the rest 

of the queens. 
�  Un-place the queen. 

�  How large is the 
solution space for 
this algorithm? 
�  64 * 63 * 62 * ... 

1 2 3 4 5 6 7 8 

1 Q ... ... ... ... ... ... ... 

2 ... ... ... ... ... ... ... ... 

3 ... 

4 

5 

6 

7 

8 



4 

Better algorithm idea 
�  Observation: In a working 

solution, exactly 1 queen 
must appear in each 
row and in 
each column. 

�  Redefine a "choice" 
to be valid placement 
of a queen in a 
particular column. 

�  How large is the 
solution space now? 
�  8 * 8 * 8 * ... 

1 2 3 4 5 6 7 8 

1 Q ... ... 

2 ... ... 

3 Q ... 

4 ... 

5 Q 

6 

7 

8 



5 

Recall: Backtracking 
A general pseudo-code algorithm for backtracking problems: 

 

Explore(choices): 
�  if there are no more choices to make:  stop. 

�  else, for each available choice C: 
�  Choose C. 
�  Explore the remaining choices. 
�  Un-choose C, if necessary.  (backtrack!) 

 



6 

Exercise 
�  Suppose we have a Board class with these methods: 

�  Write a method solveQueens that accepts a Board as a 
parameter and tries to place 8 queens on it safely. 
�  Your method should stop exploring if it finds a solution. 

Method/Constructor Description 
public Board(int size) construct empty board 
public boolean isSafe(int row, int 
column) 

true if queen can be 
safely placed here 

public void place(int row, int column) place queen here 
public void remove(int row, int column) remove queen from here 
public String toString() text display of board 



7 

Exercise solution 
// Searches for a solution to the 8 queens problem  
// with this board, reporting the first result found. 
public static void solveQueens(Board board) { 
    if (solveQueens(board, 1)) { 
        System.out.println("One solution is as follows:"); 
        System.out.println(board); 
    } else { 
        System.out.println("No solution found."); 
    } 
} 
 
... 



8 

Exercise solution, cont'd. 
// Recursively searches for a solution to 8 queens on this  
// board, starting with the given column, returning true if a  
// solution is found and storing that solution in the board. 
// PRE: queens have been safely placed in columns 1 to (col-1) 
public static boolean solveQueens(Board board, int col) { 
    if (col > board.size()) { 
        return true;   // base case: all columns are placed 
    } else { 
        // recursive case: place a queen in this column 
        for (int row = 1; row <= board.size(); row++) { 
            if (board.isSafe(row, col)) { 
                board.place(row, col);           // choose 
                if (explore(board, col + 1)) {   // explore 
                    return true;   // solution found 
                } 
                b.remove(row, col);              // un-choose 
            } 
        } 
        return false;   // no solution found 
    } 
} 



9 

Graphical User Interfaces 
�  Involve large numbers of interacting objects and classes 

�  Highly framework-dependent 

�  Path of code execution unknown 
�  Users can interact with widgets in any order 
�  Event-driven 

�  In Java, AWT vs. Swing; GUI builders vs. writing by hand 



10 

Swing Framework 
�  Great case study in OO design 



11 

Composite Layout 


