Return to Zero

[T4E 'USER INTERFACE” TEAM WE WAVE BUTTONS FOR EVERN FUNCW\OQ
SRS OUR PROTCTYPE \S AND EVEN ADDED LABELSY

.

. - G : W
PULL-THEN x
TWIST .
THEN- IF TWICE

PRESS ONLY ONCE| ol®

EEWeb.com

The "8 Queens” problem

Consider the problem of trying to place 8 queens on a
chess board such that no queen can attack another queen.

What are the "choices"? n n - .
How do we "make" or . ll . .
"un-make" a choice?

Q
How do we know when . l. . n
to stop?

0B
Q

Naive algorithm

for (each square on board):
Place a queen there.

Try to place the rest 1
of the queens.

Un-place the queen.

e e

> W N

How large is the
solution space for
this algorithm?

o 6463 6 o

cO N O U

Better algorithm idea

Observation: In a working
solution; exactly L giieen L 2 5 4 o> &6 /7 8

must appear in each]
row and in = - T 0

each column. 2

.
Redefine a "choice"

to be valid placement 4
of a queen in a
particular column.

5
6
How large is the
solution space now? 7
8

e o

Recall: Backtracking

A general pseudo-code algorithm for backtracking problems:

Explore(choices):
if there are no more choices to make: stop.

else, for each available choice C:
« Choose C.

« Explore the remaining choices.
« Un-choose C, if necessary. (backtrack!)

Exercise

e Suppose we have a Board class with these methods:

Method/Constructor Description
public Board(int size) construct empty board
public boolean isSafe (int row, int true if queen can be
column) safely placed here
public void place{int row, int column) place queen here
public void remove (int row, int column) remove queen from here
public String toString() text display of board

* Write a method solveQueens that accepts a Board as a
parameter and tries to place 8 queens on it safely.

Your method should stop exploring if it finds a solution.

Exercise solution

// Searches for a solution to the 8 gueens problem
Plowichiohisibodrd reporting the First result " Eound:
public static void solveQueens (Board board) {

e

if (solveQueens (board, 1)) {
System.out.println("One solution is as follows:");
System.out.println (board) ;

} else {

Svachsl sl M ohma W sl i o 1) AN Pe i YoM b amia W iy kb B e ba Yo M T

Exercise solution, cont'd.

// Recursively searches for a solution to 8 queens on this

// board, starting with the given column, returning true if a
// solution is found and storing that solution in the board.
// PRE: queens have been safely placed in columns 1 to (col-1)
public static boolean solveQueens (Board board, int col) {

WS I e i s el o W e M A S A Y Ry
return true; // base case: all columns are placed
} else {
// recursive case: place a gqueen in this column
YO A R b g M e A M A S G M e (Y G e A i At = (i e oV ot v e
if (board.isSafe(row, col)) {
board.place (row, col); // choose
if (explore (board, col + 1)) { // explore
return true; e Ne T PO Ne et Yl e A kate)
}
b.remove (row, col); // un-choose

}
}

retirnabalises Ve e ANy M B R e Db T

= —

Graphical User Interfaces

* Involve large numbers of interacting objects and classes
Highly framework-dependent

e Path of code execution unknown
Users can interact with widgets in any order
Event-driven

e In Java, AWT vs. Swing; GUI builders vs. writing by hand

wing Framework

e —

S

* Great case study in OO design

JTextField

Object JText t
+ JTextArea
JComboBox
Component
* JLabel
Container
+ JList
JComponent <
JMenuBar
Window
* * JOptionPane
Frame Dialog JPanel
JScrollBar
JFrame JDialog
/{ AbstractButton /
JToggleButton JMenultem JButton
JRadioButton JCheckBox JMenu

10

Composite Layout

VWeather Report
Boston, 4:50 PM

l

City: Boston Update

Status Bar

Draw out desired result

Weather Report
Boston, 4:50 PM

l

City: | Boston |Update

Status Bar

Divide into regions

displayPanel (BoxLayout)
JLabel title

JPanel cityTimePanel

JPanel graphicsPanel

JPanel citySelectionPanel

|Panel statusBarPanel

Figure out appropriate
layout managers and
components

11

