Building Java Programs

Chapter 5
Lecture 5-1: whi |l e Loops,

Fencepost Loops, and Sentinel Loops

reading: 4.1, 5.1
self-check: Ch. 4 #2; Ch. 5 # 1-10
exercises: Ch. 4 #2,4,5,8; Ch.5 # 1-2

e 1
4 Copyright 2008 by Pearson Education

A deceptive problem...

 Write a method pri nt Nunber s that prints each number
from 1 to a given maximum, separated by commas.

For example, the call:
pri nt Nunmber s(5)

should print:
Jee i

- -

Copyright 2008 by Pearson Education

-~

Flawed solutions

e public static void printNunbers(int max) {
for (int i =1; i <= max; i++) {
Systemout.print(i +",");

}
Systemout.println(); //toend the line of output

}
e Qutput from pri nt Nunbers(5): 1, 2, 3, 4, 5,

e public static void printNunbers(int max) {

for (int 1 =1; I <= max; |I++) {
Systemout.print(","+Ii) ;
}
Systemout.println(); //toend the line of output
}
e QOutput from print Nunbers(5): , 1, 2, 3, 4, 5

Copyright 2008 by Pearson Education

Fence post analogy

e We print n numbers but need only n - 1 commas.
e Similar to building a fence with wires separated by posts:

» If we repeatedly place a post + wire,
the last post will have an extra dangling wire.

ﬁ:—

» A flawed algorithm:
for (length of fence) {
place a post.
place some wire.

%

gl

~_ Copyright 2008 by Pearson Education

—

Fencepost loop

* Add a statement outside the loop to place the initial "post.”
» Also called a fencepost loop or a "loop-and-a-half" solution.

» The revised algorithm:

place a post.

for (length of fence - 1) {
place some wire.
place a post.

/

gl

~_ Copyright 2008 by Pearson Education

—

- -

i e

Fencepost method solution

public static void printNunbers(int max) {
System.out.print(1);

for (int I =2, I <= max; I++) {
Systemout.print(","+1)

¥

Systemout.println(); /] to end the line

}

* Alternate solution: Either first or last "post" can be taken out:
public static void printNunmbers(int nmax) {

for (int I =1; i<=max-1 ; 1++) {
Systemout.print(i +""),

}

System.out.printin(max); // to end the line

Copyright 2008 by Pearson Education

Fencepost question

* Write a method pri nt Pri nes that prints all prime numbers
up to a given maximum in the following format.

e o

« Example: print Pri mes(50) prints
[2 3 5 7 11 13 17 19 23 29 31 37 41 43 47]

* To find primes, write a method count Fact or s which

returns the number of factors of an integer.

e count Fact ors(60) returns 12 because
1,2, 3,4,5,6, 10, 12, 15, 20, 30, and 60 are factors of 60.

— 7
~ " Copyright 2008 by Pearson Education

- =

Fencepost answer

public class Prines {
public static void main(String[] args) {
printPrinmes(50);
printPrinmes(1000);
}

// Prints all prime numbers up to the given max.
public static void printPrines(int max) {
Systemout.print("[2");

for (int i =3; i <= max; i++) {
I f (countFactors(i) == 2) {
Systemout.print(" " + i);
}
}

Systemout.printin("]");

Copyright 2008 by Pearson Education

ﬁ:—

Fencepost answer, continued

I/l Returns how many factors the given number has.
// Note: this is also in ch04-1 slides
public static int countFactors(int nunber) {
I nt count = O;
for (int 1 =1; I <= nunber; |I++) {
I f (nunber %i == 0) {
count ++; //iis a factor of number
}
}

return count;

==

; Copyright 2008 by Pearson Education

—

whi | e loops

reading: 5.1
self-check: 1 - 10
exercises: 1 - 2

==

e 10
~ " Copyright 2008 by Pearson Education

o e

e o

Categories of Iops

* definite loop: Executes a known number of times.
» The f or loops we have seen are definite loops.

» Examples:
« Print "hello" 10 times.

« Find all the prime numbers up to an integer n.
« Print each odd number between 5 and 127.

* indefinite loop: One where the number of times its body
repeats is not known in advance.

» Examples:
« Prompt the user until they type a non-negative number.

o Print random numbers until a prime number is printed.
« Repeat until the user has types "q" to quit.

_— 11
- Copyright 2008 by Pearson Education

* while loop: Repeatedly executes its

body as long as a logical test is true. ——
whil e (test) {
statement(s); l
} execute statement

e Example:

Int num = 1; // initialization
while (num <= 200) { /] test
Systemout.print(num+ " ");
num = num?* 2; /[update
}
« OUTPUT:

1 2 4 8 16 32 64 128

12

- -

Copyright 2008 by Pearson Education

Example whi | e loop
// finds a number's first factor other than 1
Scanner consol e = new Scanner (Systemin);
Systemout.print("Type a nunber: ");
I nt nunber = console.nextInt();
Int factor = 2;
while (number % factor != 0) {
factor++;
}

Systemout.printin("First factor: " + factor);

e o

e Example log of execution:

Type a nunber: 91
First factor: 7

* whi |l e is better than f or here because we don't know how
many times we will need to increment to find the factor.

13

— Copyright 2008 by Pearson Education

- =

ﬁj’

for vs. while Ips

* The f or loop is just a specialized form of the whi | e loop.
» The following loops are equivalent:

for (int num= 1; num<= 200; num = num?* 2) {

Systemout.print(num+ " ");
}
/[actually, not a very compelling use of a while | oop
I/ (a for loop is better because the # of reps is d efinite)

I nt num= 1;

while (num <= 200) {
Systemout.print(num+ " ");
num = num * 2;

14
Copyright 2008 by Pearson Education

whi | e and Scanner

e whi | e loops are often used with Scanner input.

* You don't know many times you'll need to re-prompt the user
if they type bad data. (an indefinite loop!)

e o

— ey

* Write code that repeatedly prompts until the user types a
non-negative number, then computes its square root.

» Example log of execution:

Type a non-negative integer: -5

| nval id nunber, try again: -1

| nval i d nunber, try again: -235
| nval i d nunber, try again: -87
| nval id nunber, try again: 121

The square root of 121 is 11.0

15

—y———_—

~ Copyright 2008 by Pearson Education

e o

- -

whi | e loop answer

Systemout.print("Type a non-negative integer: ");
| Nt nunber = console.nextint();

while (number < 0) {
Systemout.print("lInvalid nunber, try again: "),
nunber = console.nextlnt();

}

Systemout.println("The square root of " + nunber +
s " + Math.sgrt(hnumber)),

» Notice that nunber has to be declared outside the loop.

16

Copyright 2008 by Pearson Education

Sentinel loops

reading: 5.1
self-check: 5
exercises: 1, 2

videos: Ch. 5 #4

2 E
. ~_ Copyright 2008 by Pearson Education

Sentinel values

* sentinel: A value that signals the end of user input.
» sentinel loop: Repeats until a sentinel value is seen.

* Example: A program that repeatedly prompts the user for
numbers until the user types -1, then outputs their sum.

* (In this case, -1 is the sentinel value.)

Enter a nunber (-1 to quit): 10
Enter a nunber (-1 to quit): 25
Enter a nunber (-1 to quit): 35
Enter a nunber (-1 to quit): -1

The sumis 70

— 18
Copyright 2008 by Pearson Education

A second sentinel problem

* Exercise: Write a program that repeatedly prompts the
user for words until the user types "goodbye", then outputs
the longest word that was typed.

» (In this case, "goodbye" is the sentinel value.)

Type a word (or "goodbye" to quit): Obama
Type a word (or "goodbye" to quit): McCain
Type a word (or "goodbye" to quit): Biden
Type a word (or "goodbye" to quit): Paln

Type a word (or "goodbye" to quit): goodbye
The | ongest word you typed was "McCain" (6 letters)

e 19
. Copyright 2008 by Pearson Education

Flawed sentinel solution

» What's wrong with this solution?

Scanner consol e = new Scanner(Systemin);
String | ongest = "";
String word = ""; /["dummy value"; anything but "goodbye"

whil e (!word. equal s("goodbye")) {
Systemout.print("Type a word (or \"goodbye\" to quit): ");
word = consol e. next ();
I f (word.length() > longest.length()) {
| ongest = word,;
}

}

Systemout.println("The | ongest word you typed was \"" +
l ongest + "\" (" + longest.length() + " letters)");

* The solution produces the wrong output!
The | ongest word you typed was "goodbye" (7 letters)

20

— Copyright 2008 by Pearson Education

The problem

e Our code uses a pattern like this:
longest = empty string.
while (input is not the sentinel) {
prompt for input; read input.
check if input is longest; if so, store it.

/

* On the last pass, the sentinel is added to the sum:
prompt for input; read input ("goodbye”).
check if input is longest; if so, store it.

e This is a fencepost problem.
» We must read N words, but only process the first N-1 of them.

21

—y

_ Copyright 2008 by Pearson Education

A fencepost solution

* We need to use a pattern like this:

e o

longest = empty string.
prompt for input; read input. // place 1st "post”

while (input is not the sentinel) {
check if input is longest; if so, store it. // place a "wire"
prompt for input; read input. // place a "post”

7

» Sentinel loops often utilize a fencepost "loop-and-a-half”
solution by pulling some code out of the loop.

22

- -

Copyright 2008 by Pearson Education

Correct code

e This solution produces the correct output:

Scanner consol e = new Scanner(Systemin);
String | ongest = "";

// moved one "post" out of loop
System.out.print("Type a word (or \"goodbye\" to qui by
String word = console.next();

whi l e (!word. equal s("goodbye")) {
i f (word.length() > longest.length()) {
longest = word, // moved to top of loop
}
Systemout.print("Type a word (or \"goodbye\" to quit): ");
word = consol e. next ();

}

Systemout.println("The | ongest word you typed was \"" +
| ongest + "\" (" + longest.length() + " letters)");

23

- -

Copyright 2008 by Pearson Education

Constant with sentinel

e A better solution uses a constant for the sentinel:
public static final String SENTINEL = "goodbye";

e This solution uses the constant:

Scanner consol e = new Scanner (Systemin);

Systemout.print("Type a word (or \"" + SENTINEL + "\" to quit): ");
String word = consol e. next () ;

String | ongest = "";

whi l e (!word. equal s(SENTINEL)) {
if (word.length() > longest.length()) {
| ongest = word,; /l moved to top of loop
}

Systemout.print("Type a word (or \"" + SENTINEL + "\" to quit): ");
word = consol e. next () ;

}

Systemout.println("The | ongest word you typed was \"" +
| ongest + "\" (" + longest.length() + " letters)");

24

— Copyright 2008 by Pearson Education

S E

i e

Sentinel number problem

e Solution to the "sum numbers until -1 is typed" problem:

Scanner consol e = new Scanner(Systemin);
I nt sum = O;

System.out.print("Enter a number (-1 to quit): ");

Int number = console.nextint();

while (nunber = -1) {
sum =sum + number; /I moved to top of loop
Systemout.print("Enter a nunber (-1 to quit): ");
nunmber = consol e. nextint();

}

Systemout.println("The sumis " + sum;

25
Copyright 2008 by Pearson Education

