Building Java Programs

Chapter 13
Lecture 13-1: binary search and complexity

reading: 13.1-13.2
I heard Java is an exceptional language.

I know, the exception hierarchy is awful.

That's not the object of what I was saying.

Oh, don't be so primitive.
Tips for testing

• You cannot test every possible input, parameter value, etc.
 • Think of a limited set of tests likely to expose bugs.

• Think about boundary cases
 • Positive; zero; negative numbers
 • Right at the edge of an array or collection's size

• Think about empty cases and error cases
 • 0, -1, null; an empty list or array

• test behavior in combination
 • Maybe `add` usually works, but fails after you call `remove`
 • Make multiple calls; maybe `size` fails the second time only
Searching methods

• Implement the following methods:
 - `indexOf` – returns first index of element, or -1 if not found
 - `contains` - returns true if the list contains the given int value

• Why do we need `isEmpty` and `contains` when we already have `indexOf` and `size`?
 • Adds convenience to the client of our class:

 // less elegant // more elegant
 if (myList.size() == 0) {
 if (myList.isEmpty()) {
 if (myList.indexOf(42) >= 0) {
 if (myList.contains(42)) {
Sequential search

- **sequential search**: Locates a target value in an array / list by examining each element from start to finish. Used in `indexOf`.

 - How many elements will it need to examine?
 - Example: Searching the array below for the value **42**:

| index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| value | -4 | 2 | 7 | 10 | 15 | 20 | 22 | 25 | 30 | 36 | 42 | 50 | 56 | 68 | 85 | 92 | 103|

- The array is sorted. Could we take advantage of this?
Binary search (13.1)

- **binary search**: Locates a target value in a *sorted* array or list by successively eliminating half of the array from consideration.

- How many elements will it need to examine?

- Example: Searching the array below for the value **42**:

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>-4</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>50</td>
<td>56</td>
<td>68</td>
<td>85</td>
<td>92</td>
<td>103</td>
</tr>
</tbody>
</table>

min

mid

max
Arrays.binarySearch

// searches an entire sorted array for a given value
// returns its index if found; a negative number if not found
// Precondition: array is sorted
Arrays.binarySearch(array, value)

// searches given portion of a sorted array for a given value
// examines minIndex (inclusive) through maxIndex (exclusive)
// returns its index if found; a negative number if not found
// Precondition: array is sorted
Arrays.binarySearch(array, minIndex, maxIndex, value)

• The binarySearch method in the Arrays class searches an array very efficiently if the array is sorted.
 • You can search the entire array, or just a range of indexes (useful for "unfilled" arrays such as the one in ArrayIntList)
Using `binarySearch`

```java
// index  0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15
int[] a = {-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92};
int index  = Arrays.binarySearch(a, 0, 16, 42);  // index1 is 10
int index2 = Arrays.binarySearch(a, 0, 16, 21);  // index2 is -7
```

- `binarySearch` returns the index where the value is found.
- If the value is *not* found, `binarySearch` returns:

 $$-(\text{insertionPoint} + 1)$$

 - where `insertionPoint` is the index where the element *would* have been, if it had been in the array in sorted order.
 - To insert the value into the array, negate `insertionPoint + 1`

```java
int indexToInsert21 = -(index2 + 1);  // 6
```
Runtime Efficiency (13.2)

• How much better is binary search than sequential search?

• **efficiency**: measure of computing resources used by code.
 • can be relative to speed (time), memory (space), etc.
 • most commonly refers to run time

• Assume the following:
 • Any single Java statement takes same amount of time to run.
 • A method call's runtime is measured by the total of the statements inside the method's body.
 • A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.
Efficiency examples

statement1; statement2; statement3;

\[
\begin{align*}
\text{for (int } i = 1; i <= N; i++) & \{ \\
& \text{statement4;} \\
\}
\end{align*}
\]

\[
\text{for (int } i = 1; i <= N; i++) \{ \\
& \text{statement5; statement6; statement7;} \\
\}
\]

\[
3 \quad N \quad 4N + 3
\]

\[
3N
\]
Efficiency examples 2

```java
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= N; j++) {
        statement1;
    }
}

for (int i = 1; i <= N; i++) {
    statement2;
    statement3;
    statement4;
    statement5;
}
```

- How many statements will execute if \(N = 10 \)? If \(N = 1000 \)?
Algorithm growth rates (13.2)

- We measure runtime in proportion to the input data size, N.
 - **growth rate**: Change in runtime as N changes.

- Say an algorithm runs $0.4N^3 + 25N^2 + 8N + 17$ statements.
 - Consider the runtime when N is *extremely large*.
 - We ignore constants like 25 because they are tiny next to N.
 - The highest-order term (N^3) dominates the overall runtime.

- We say that this algorithm runs "on the order of" N^3.
- or $O(N^3)$ for short ("Big-Oh of N cubed")
Complexity classes

- **Complexity class**: A category of algorithm efficiency based on the algorithm's relationship to the input size N.

<table>
<thead>
<tr>
<th>Class</th>
<th>Big-Oh</th>
<th>If you double N, ...</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>$O(1)$</td>
<td>unchanged</td>
<td>10ms</td>
</tr>
<tr>
<td>logarithmic</td>
<td>$O(\log_2 N)$</td>
<td>increases slightly</td>
<td>175ms</td>
</tr>
<tr>
<td>linear</td>
<td>$O(N)$</td>
<td>doubles</td>
<td>3.2 sec</td>
</tr>
<tr>
<td>log-linear</td>
<td>$O(N \log_2 N)$</td>
<td>slightly more than doubles</td>
<td>6 sec</td>
</tr>
<tr>
<td>quadratic</td>
<td>$O(N^2)$</td>
<td>quadruples</td>
<td>1 min 42 sec</td>
</tr>
<tr>
<td>cubic</td>
<td>$O(N^3)$</td>
<td>multiplies by 8</td>
<td>55 min</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>exponential</td>
<td>$O(2^N)$</td>
<td>multiplies drastically</td>
<td>5×10^{61} years</td>
</tr>
</tbody>
</table>
Complexity classes

Sequential search

• What is its complexity class?

```java
public int indexOf(int value) {
    for (int i = 0; i < size; i++) {
        if (elementData[i] == value) {
            return i;
        }
    }
    return -1; // not found
}
```

• On average, "only" N/2 elements are visited
 • 1/2 is a constant that can be ignored
Collection efficiency

- Efficiency of our `ArrayIntList` or Java's `ArrayList`:

<table>
<thead>
<tr>
<th>Method</th>
<th>ArrayList</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>O(1)</td>
</tr>
<tr>
<td>add(index, value)</td>
<td>O(N)</td>
</tr>
<tr>
<td>indexOf</td>
<td>O(N)</td>
</tr>
<tr>
<td>get</td>
<td>O(1)</td>
</tr>
<tr>
<td>remove</td>
<td>O(N)</td>
</tr>
<tr>
<td>set</td>
<td>O(1)</td>
</tr>
<tr>
<td>size</td>
<td>O(1)</td>
</tr>
</tbody>
</table>
Binary search

- **binary search** successively eliminates half of the elements.

- *Algorithm:* Examine the middle element of the array.
 - If it is too big, eliminate the right half of the array and repeat.
 - If it is too small, eliminate the left half of the array and repeat.
 - Else it is the value we're searching for, so stop.

- Which indexes does the algorithm examine to find value 42?
- What is the runtime complexity class of binary search?

| index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| value | -4 | 2 | 7 | 10 | 15 | 20 | 22 | 25 | 30 | 36 | 42 | 50 | 56 | 68 | 85 | 92 | 103|

min | | | | | | | | | | | | | | | | |
mid | | | | | | | | | | | | | | | | |
max | | | | | | | | | | | | | | | | |
Binary search runtime

- For an array of size N, it eliminates $\frac{1}{2}$ until 1 element remains.

 $N, \frac{N}{2}, \frac{N}{4}, \frac{N}{8}, ..., 4, 2, 1$

- How many divisions does it take?

- Think of it from the other direction:

 - How many times do I have to multiply by 2 to reach N?

 $1, 2, 4, 8, ..., \frac{N}{4}, \frac{N}{2}, N$

 - Call this number of multiplications "x".

 $$2^x = N$$
 $$x = \log_2 N$$

- Binary search is in the **logarithmic** complexity class.
Max subsequence sum

• Write a method `maxSum` to find the largest sum of any contiguous subsequence in an array of integers.
 • Easy for all positives: include the whole array.
 • What if there are negatives?

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>2</td>
<td>1</td>
<td>-4</td>
<td>10</td>
<td>15</td>
<td>-2</td>
<td>22</td>
<td>-8</td>
<td>5</td>
</tr>
</tbody>
</table>

Largest sum: 10 + 15 + -2 + 22 = 45

• (Let's define the max to be 0 if the array is entirely negative.)

• Ideas for algorithms?
Algorithm 1 pseudocode

maxSum(a):

 max = 0.
 for each starting index i:
 for each ending index j:
 sum = add the elements from a[i] to a[j].
 if sum > max,
 max = sum.

return max.

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>2</td>
<td>1</td>
<td>-4</td>
<td>10</td>
<td>15</td>
<td>-2</td>
<td>22</td>
<td>-8</td>
<td>5</td>
</tr>
</tbody>
</table>
Algorithm 1 code

- What complexity class is this algorithm?
- \(O(N^3)\). Takes a few seconds to process 2000 elements.

```java
public static int maxSum1(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        for (int j = i; j < a.length; j++) {
            // sum = add the elements from a[i] to a[j].
            int sum = 0;
            for (int k = i; k <= j; k++) {
                sum += a[k];
            }
            if (sum > max) {
                max = sum;
            }
        }
    }
    return max;
}
```
Flaws in algorithm 1

- Observation: We are redundantly re-computing sums.
 - For example, we compute the sum between indexes 2 and 5: \(a[2] + a[3] + a[4] + a[5]\)

 - We already had computed the sum of 2-5, but we compute it again as part of the 2-6 computation.

- Let's write an improved version that avoids this flaw.

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>2</td>
<td>1</td>
<td>-4</td>
<td>10</td>
<td>15</td>
<td>-2</td>
<td>22</td>
<td>-8</td>
<td>5</td>
</tr>
</tbody>
</table>
Algorithm 2 code

- What complexity class is this algorithm?
 - $O(N^2)$. Can process tens of thousands of elements per second.

```java
public static int maxSum2(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        int sum = 0;
        for (int j = i; j < a.length; j++) {
            sum += a[j];
            if (sum > max) {
                max = sum;
            }
        }
    }
    return max;
}
```

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>2</td>
<td>1</td>
<td>-4</td>
<td>10</td>
<td>15</td>
<td>-2</td>
<td>22</td>
<td>-8</td>
<td>5</td>
</tr>
</tbody>
</table>
A clever solution

- **Claim 1**: A max range cannot start with a negative-sum range.

<table>
<thead>
<tr>
<th>i</th>
<th>...</th>
<th>j</th>
<th>j+1</th>
<th>...</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0</td>
<td></td>
<td></td>
<td>sum(j+1, k)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sum(i, k) < sum(j+1, k)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Claim 2**: If \(\text{sum}(i, j-1) \geq 0 \) and \(\text{sum}(i, j) < 0 \), any max range that ends at \(j+1 \) or higher cannot start at any of \(i \) through \(j \).

<table>
<thead>
<tr>
<th>i</th>
<th>...</th>
<th>j-1</th>
<th>j</th>
<th>j+1</th>
<th>...</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>≥ 0</td>
<td>< 0</td>
<td>sum(j+1, k)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 0</td>
<td></td>
<td></td>
<td>sum(j+1, k)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 0</td>
<td></td>
<td>sum(?, k) < sum(j+1, k)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Together, these observations lead to a very clever algorithm...
Algorithm 3 code

- What complexity class is this algorithm?
 - \(O(N)\). Handles many millions of elements per second!

```java
public static int maxSum3(int[] a) {
    int max = 0;
    int sum = 0;
    int i = 0;
    for (int j = 0; j < a.length; j++) {
        if (sum < 0) { // if sum becomes negative, max range
            i = j;       // cannot start with any of i - j-1
            sum = 0;    // (Claim 2)
        }
        sum += a[j];
        if (sum > max) {
            max = sum;
        }
    }
    return max;
}
```