
1 of 17

CSE 142 Sample Final Exam #7
(based on Autumn 2008's final)

1. Array Mystery
Consider the following method:

public static void arrayMystery(int[] a) {

 for (int i = a.length - 2; i > 0; i--) {

 if (a[i - 1] < a[i + 1]) {

 a[i] += a[i - 1];

 } else {

 a[i] += a[i + 1];

 }

 }

}

Indicate in the right-hand column what values would be stored in the array after the method arrayMystery executes

if the integer array in the left-hand column is passed as a parameter to it.

Original Contents of Array Final Contents of Array

int[] a1 = {1, 2, 3};

arrayMystery(a1);

int[] a2 = {8, 2, 3, 1, 6};

arrayMystery(a2);

int[] a3 = {1, 1, 1, 1, 1, 1};

arrayMystery(a3);

int[] a4 = {40, 10, 25, 5, 10, 30};

arrayMystery(a4);

int[] a5 = {15, 6, -1, 4, 8, -2, 7, 4};

arrayMystery(a5);

2 of 17

2. Reference Semantics Mystery
The following program produces 4 lines of output. Write the output below, as it would appear on the console.

public class ReferenceMystery {

 public static void main(String[] args) {

 int x = 1;

 int[] a = new int[4];

 x++;

 a[x - 1] = 3;

 mystery(x, a);

 System.out.println(x + " " + Arrays.toString(a));

 x++;

 a[x - 1] = 2;

 mystery(x, a);

 System.out.println(x + " " + Arrays.toString(a));

 }

 public static void mystery(int x, int[] a) {

 a[x]++;

 x--;

 a[x - 1] = a[x + 1];

 System.out.println(x + " " + Arrays.toString(a));

 }

}

3 of 17

3. Inheritance Mystery
Assume that the following classes have been defined:

public class McCain extends Biden {

 public void republican() {

 System.out.print("mccain-R ");

 }

}

public class Palin {

 public void republican() {

 System.out.print("palin-R ");

 }

 public void democrat() {

 republican();

 System.out.print("palin-D ");

 }

 public String toString() {

 return "palin";

 }

}

public class Obama extends Palin {

 public void republican() {

 super.republican();

 System.out.print("obama-R ");

 }

}

public class Biden extends Palin {

 public String toString() {

 return "biden";

 }

 public void democrat() {

 System.out.print("biden-D ");

 super.democrat();

 }

}

Given the classes above, what output is produced by the following code?

Palin[] politicians = {new Biden(), new Palin(), new McCain(), new Obama()};

for (int i = 0; i < politicians.length; i++) {

 System.out.println(politicians[i]);

 politicians[i].republican();

 System.out.println();

 politicians[i].democrat();

 System.out.println();

 System.out.println();

}

4 of 17

4. File Processing

Write a static method named reportBlankLines that accepts a Scanner containing an input file as a parameter and

that outputs the line numbers of any blank lines and that reports the total number of blank lines in the file. For

example, given the following input file:

Remember that a file

can have blank lines

like the one below:

A blank line:

is read as a String

of length 0

by Scanner

Your method should print the following output:

line 4 is blank

line 6 is blank

line 9 is blank

total blank lines = 3

Notice that each blank line produces a line of output and that there is a final line of output reporting the total number

of blank lines. Also notice that lines are numbered starting with 1 (first line is line 1, second line is line 2, and so on).

5 of 17

5. File Processing
Write a static method named printDuplicates that accepts as its parameter a Scanner for an input file containing

a series of lines. Your method should examine each line looking for consecutive occurrences of the same token on the

same line, and print each duplicated token along with how many times it appears consecutively. Non-repeated tokens

are not printed. Repetition across multiple lines (such as if a line ends with a given token and the next line starts with

the same token) is not considered in this problem.

For example, if the input file contains the following text (sequences of duplicated tokens are underlined for emphasis):

hello how how are you you you you
I I I am Jack's Jack's smirking smirking smirking smirking smirking revenge
 bow wow wow yippee yippee yo yippee yippee yay yay yay
one fish two fish red fish blue fish
It's the Muppet Show, wakka wakka wakka

Your method would produce the following output for the preceding input file:

how*2 you*4
I*3 Jack's*2 smirking*5
wow*2 yippee*2 yippee*2 yay*3

wakka*3

Your code prints only the repeated tokens; the ones that appear only once in a row are not shown. Your code should

place a single space between each reported duplicate token and should respect the line breaks in the original file. This

is why a blank line appears in the expected output, corresponding to the fourth line of the file that did not contain any

consecutively duplicated tokens. You may assume that each line of the file contains at least 1 token of input.

6 of 17

6. Array Programming
Write a static method named arraySum that accepts two arrays of real numbers a1 and a2 as parameters and returns a

new array a3 such that each element of a3 at each index i is the sum of the elements at that same index i in a1 and a2.

For example, if a1 stores {4.5, 5.0, 6.6} and a2 stores {1.1, 3.4, 0.5}, your method should return {5.6,

8.4, 7.1}, which is obtained by adding 4.5 + 1.1, 5.0 + 3.4, and 6.6 + 0.5.

If the arrays a1 and a2 are not the same length, the result returned by your method should have as many elements as

the larger of the two arrays. If a given index i is in bounds of a1 but not a2 (or vice versa), your result array's element

at index i should be equal to the value of the element at index i in the longer of a1 or a2. For example, if a1 stores

{1.8, 2.9, 9.4, 5.5} and a2 stores {2.4, 5.0}, your method should return {4.2, 7.9, 9.4, 5.5}.

The table below shows some additional calls to your method and the expected values returned:

Arrays Call and Value Returned
double[] a1 = {4.5, 2.8, 3.4, 0.8};

double[] a2 = {1.4, 8.9, -1.0, 2.3};
arraySum(a1, a2) returns
{5.9, 11.7, 2.4, 3.1}

double[] ax = {2.4, 3.8};

double[] ay = {0.2, 9.2, 4.3, 2.8, 1.4};
arraySum(ax, ay) returns
{2.6, 13.0, 4.3, 2.8, 1.4}

double[] aa = {1.0, 2.0, 3.0};

double[] ab = {4.0, 5.0};
arraySum(aa, ab) returns
{5.0, 7.0, 3.0}

double[] ai = {};

double[] aj = {42.0};
arraySum(ai, aj) returns
{42.0}

For full credit, you should not modify the elements of a1 or a2. You may not use a String to solve this problem.

7 of 17

7. Array Programming
Write a static method named partition that accepts an array of integers a and an integer element value v as its

parameters, and rearranges ("partitions") the array's elements so that all its elements of a that are less than v occur

before all elements that are greater than v. The exact order of the elements is unimportant so long as all elements less

than v appear before all elements greater than v. For example, if your method were passed the following array:

int[] a = {15, 1, 6, 12, -3, 4, 8, -7, 21, 2, 30, -1, 9};

partition(a, 5);

One acceptable ordering of the elements after the call would be: (elements < 5 and > 5 are underlined for emphasis)

{-1, 1, 2, -7, -3, 4, 8, 12, 21, 6, 30, 15, 9}

Hint: Your method will need to rearrange the elements of the array, which will involve swapping various elements

from less desirable indexes to more desirable ones.

You may assume that the array contains no duplicates and does not contain the element value v itself. You may not

use Arrays.sort, Collections.sort, or any other pre-defined sorting algorithm from the Java Class Libraries or

textbook to solve this problem. You also may not use a String to solve this problem.

8 of 17

8. Critters
Write a class Hyena that extends the Critter class, along with its movement and eating behavior. All unspecified

aspects of Hyena use the default behavior. Write the complete class with any fields, constructors, etc. necessary.

Hyena objects move in a rectangular pattern looking for food, walking NORTH, then EAST, then SOUTH, then

WEST. Each time the Hyena walks an entire rectangle or eats food, it starts the rectangle pattern over again but with

a rectangle 1 step wider than before. The general pattern is as follows, if the Hyena doesn't find any food:

• N, E, S, W, N, E, E, S, W, W, N, E, E, E, S, W, W, W, N, E, E, E, E, S, W, W, W, W, ...

If the Hyena encounters food at any point during its movement pattern, it eats the food and starts the pattern over,

lengthening the rectangular pattern by 1 in the process. For example:

• N, E, S, W, N, E, E (eats food), N, E, E, E, S, W, W (eats food),

N, E, E, E, E, S, W, W, W, W, N, E, E, E, E, E, S (eats food), N, E, E, E, E, E, E, S, W, W, ...

The following diagrams summarize this behavior, the left without food and the right when food is encountered:

9 of 17

9. Classes and Objects

Suppose that you are provided with a pre-written class Date as

described at right. (The headings are shown, but not the method

bodies, to save space.) Assume that the fields, constructor, and

methods shown are already implemented. You may refer to them

or use them in solving this problem if necessary.

Write an instance method named absoluteDay that will be

placed inside the Date class to become a part of each Date

object's behavior. The absoluteDay method should return the

"absolute day of the year" between 1 and 365 represented by the

Date object. January 1 is absolute day #1, January 2 is day #2,

..., and December 31st is absolute day #365. For example, calling

this method on a date representing February 13th should return

44, and calling it on a Date representing September 19th should

return 262.

Suppose the following dates have been declared:

Date jan1 = new Date(1, 1);
Date jan4 = new Date(1, 4);
Date feb1 = new Date(2, 1);
Date mar10 = new Date(3, 10);
Date sep19 = new Date(9, 19);
Date dec31 = new Date(12, 31);

The results of calling your method on the above objects are:

Call Returns
 jan1.absoluteDay() 1
 jan4.absoluteDay() 4
 feb1.absoluteDay() 32
 mar10.absoluteDay() 69
 sep19.absoluteDay() 262
 dec31.absoluteDay() 365

You should not solve this problem by writing 12 if statements,

one for each month; this is redundant and poor style. If you solve

the problem that way, you will receive at most half credit. Also,

your method should not have the side effect of modifying the

Date object on which it was called. In other words, when your

method is done executing, the values of the fields of the Date

object on which it was called should be unchanged. A solution

that does so will receive at most half credit. (It's okay for you to

modify the object's state temporarily if it helps you solve this

problem, but when your method is done executing, the state

should be the same as when you started.)

Recall that your method is allowed to call other methods on Date

objects or construct other objects if you like.

// Each Date object stores a single

// month/day such as September 19.

// This class ignores leap years.

public class Date {

 private int month;

 private int day;

 // Constructs a date with

 // the given month and day.

 public Date(int m, int d)

 // Returns the date's day.

 public int getDay()

 // Returns the date's month.

 public int getMonth()

 // Returns the number of days

 // in this date's month.

 public int daysInMonth()

 // Modifies this date's state

 // so that it has moved forward

 // in time by 1 day, wrapping

 // around into the next month

 // or year if necessary.

 // example: 9/19 -> 9/20

 // example: 9/30 -> 10/1

 // example: 12/31 -> 1/1

 public void nextDay()

 // your method would go here

}

10 of 17

Solutions

1. Array Mystery
Expression
int[] a1 = {1, 2, 3};

arrayMystery(a1);

int[] a2 = {8, 2, 3, 1, 6};

arrayMystery(a2);

int[] a3 = {1, 1, 1, 1, 1, 1};

arrayMystery(a3);

int[] a4 = {40, 10, 25, 5, 10, 30};

arrayMystery(a4);

int[] a5 = {15, 6, -1, 4, 8, -2, 7, 4};

arrayMystery(a5);

Final Contents of Array
{1, 3, 3}

{8, 7, 5, 4, 6}

{1, 2, 2, 2, 2, 1}

{40, 45, 35, 20, 15, 30}

{15, 8, 2, 3, 11, 3, 5, 4}

2. Reference Semantics Mystery

1 [1, 3, 1, 0]

2 [1, 3, 1, 0]

2 [1, 1, 2, 1]

3 [1, 1, 2, 1]

3. Inheritance Mystery

biden

palin-R

biden-D palin-R palin-D

palin

palin-R

palin-R palin-D

biden

mccain-R

biden-D mccain-R palin-D

palin

palin-R obama-R

palin-R obama-R palin-D

11 of 17

4. File Processing
public static void listBlankLines(Scanner input) {
 int line = 0;
 int count = 0;
 while (input.hasNextLine()) {
 String text = input.nextLine();
 line++;
 if (text.length() == 0) {
 System.out.println("line " + line + " is blank");
 count++;
 }
 }
 System.out.println("total blank lines = " + count);
}

5. File Processing (two solutions shown)
public static void printDuplicates(Scanner input) {
 while (input.hasNextLine()) {
 String line = input.nextLine();
 Scanner lineScan = new Scanner(line);
 String token = lineScan.next();
 int count = 1;
 while (lineScan.hasNext()) {
 String token2 = lineScan.next();
 if (token2.equals(token)) {
 count++;
 } else {
 if (count > 1) {
 System.out.print(token + "*" + count + " ");
 }
 token = token2;
 count = 1;
 }
 }

 if (count > 1) {
 System.out.print(token + "*" + count);
 }
 System.out.println();
 }
}

public static void printDuplicates(Scanner input) {
 while (input.hasNextLine()) {
 String line = input.nextLine();
 Scanner lineScan = new Scanner(line);
 String token = lineScan.next();
 int count = 1;
 while (lineScan.hasNext()) {
 String token2 = lineScan.next();
 if (token2.equals(token)) {
 count++;
 }

 if (count > 1 && (!lineScan.hasNext() || !token2.equals(token))) {
 System.out.print(token + "*" + count + " ");
 count = 1;
 }
 token = token2;
 }

 System.out.println();
 }
}

12 of 17

6. Array Programming (five solutions shown)
public static double[] arraySum(double[] a1, double[] a2) {
 double[] a3 = new double[Math.max(a1.length, a2.length)];
 for (int i = 0; i < a3.length; i++) {
 if (i >= a1.length) { // done with a1; take from a2
 a3[i] = a2[i];
 } else if (i >= a2.length) { // done with a2; take from a1
 a3[i] = a1[i];
 } else {
 a3[i] = a1[i] + a2[i]; // take sum of a1 and a2
 }
 }
 return a3;
}

public static double[] arraySum(double[] a1, double[] a2) {
 double[] a3 = new double[Math.max(a1.length, a2.length)];
 for (int i = 0; i < a1.length; i++) { // add a1 into result
 a3[i] += a1[i];
 }
 for (int i = 0; i < a2.length; i++) { // add a2 into result
 a3[i] += a2[i];
 }
 return a3;
}

public static double[] arraySum(double[] a1, double[] a2) {
 double[] a3; // create result array
 if (a1.length > a2.length) {
 a3 = new double[a1.length];
 } else {
 a3 = new double[a2.length];
 }
 for (int i = 0; i < a1.length; i++) { // add a1 into result
 a3[i] += a1[i];
 }
 for (int i = 0; i < a2.length; i++) { // add a2 into result
 a3[i] += a2[i];
 }
 return a3;
}

public static double[] arraySum(double[] a1, double[] a2) {
 int minLength = Math.min(a1.length, a2.length);
 int maxLength = Math.max(a1.length, a2.length);
 double[] a3 = new double[maxLength]; // create result array

 for (int i = 0; i < minLength; i++) {
 a3[i] = a1[i] + a2[i];
 }
 for (int i = minLength; i < maxLength; i++) { // add a1,a2 into result
 if (a1.length > a2.length) {
 a3[i] = a1[i];
 } else {
 a3[i] = a2[i];
 }
 }
 return a3;
}

public static double[] arraySum(double[] a1, double[] a2) {
 double[] shorter = a1;
 double[] longer = a2;
 if (a1.length > a2.length) {
 shorter = a2;
 longer = a1;
 }
 double[] a3 = new double[longer.length];
 for (int i = 0; i < shorter.length; i++) {
 a3[i] = shorter[i] + longer[i];
 }
 for (int i = shorter.length; i < longer.length; i++) {
 a3[i] += longer[i];
 }

 return a3;
}

13 of 17

7. Array Programming (six solutions shown)
public static void partition(int[] a, int v) {
 int i2 = a.length - 1;
 for (int i1 = 0; i1 < i2; i1++) {
 while (i2 > i1 && a[i2] >= v) {
 i2--;
 }
 int temp = a[i1];
 a[i1] = a[i2];
 a[i2] = temp;
 }
}

public static void partition(int[] a, int v) {
 int i1 = 0;
 int i2 = a.length - 1;
 while (true) {
 while (i2 > i1 && a[i2] >= v) {
 i2--;
 }
 while (i2 > i1 && a[i1] <= v) {
 i1++;
 }
 if (i1 >= i2) {
 break;
 }

 int temp = a[i1];
 a[i1] = a[i2];
 a[i2] = temp;
 }
}

public static void partition(int[] a, int v) {
 int[] copy = new int[a.length];
 int target = 0;

 for (int i = 0; i < a.length; i++) {
 if (a[i] < v) {
 copy[target] = a[i];
 target++;
 }
 }

 for (int i = 0; i < a.length; i++) {
 if (a[i] > v) {
 copy[target] = a[i];
 target++;
 }
 }

 for (int i = 0; i < a.length; i++) {
 a[i] = copy[i];
 }
}

public static void partition(int[] a, int v) {
 for (int i = 0; i < a.length; i++) {
 for (int j = 0; j < a.length - 1; j++) {
 if (a[j] > a[j + 1]) {
 int temp = a[j];
 a[j + 1] = a[j];
 a[j] = temp;
 }
 }
 }
}

14 of 17

public static void partition(int[] a, int v) {
 for (int i = 0; i < a.length; i++) {
 int smallest = i;
 for (int j = i + 1; j < a.length; j++) {
 if (a[j] < a[smallest]) {
 smallest = j;
 }
 }
 int temp = a[i];
 a[i] = a[smallest];
 a[smallest] = temp;
 }
}

public static void partition(int[] a, int v) {
 for (int i = 0; i < a.length; i++) {
 if (a[i] > a[i + 1]) {
 int temp = a[i];
 a[i + 1] = a[i];
 a[i] = temp;
 partition(a, v);
 }
 }
}

15 of 17

8. Critters (two solutions shown)
public class Hyena extends Critter {
 private int moves;
 private int width;

 public Hyena() {
 moves = 0;
 width = 1;
 }

 public boolean eat() {
 moves = 0;
 width++;
 return true;
 }

 public Direction getMove() {
 moves++;
 if (moves > 2 * width + 2) {
 moves = 1;
 width++;
 }

 if (moves == 1) {
 return Direction.NORTH;
 } else if (moves <= width + 1) {
 return Direction.EAST;
 } else if (moves == width + 2) {
 return Direction.SOUTH;
 } else {
 return Direction.WEST;
 }
 }
}

public class Hyena extends Critter {
 private int moves = 0;
 private int max = 1;
 private boolean ate = false;

 public boolean eat() {
 ate = true;
 return true;
 }

 public Direction getMove() {
 moves++;
 if (ate || moves == 2 * max + 3) {
 ate = false;
 moves = 1;
 max++;
 }

 if (moves == 1) {
 return Direction.NORTH;
 } else if (moves <= max + 1) {
 return Direction.EAST;
 } else if (moves == max + 2) {
 return Direction.SOUTH;
 } else {
 return Direction.WEST;
 }
 }
}

16 of 17

9. Classes and Objects (nine solutions shown)
public int absoluteDay() {
 int myMonth = month;
 int myDay = day;
 month = 1;
 day = 1;
 int count = 1;
 while (month != myMonth || day != myDay) {
 count++;
 nextDay();
 }
 return count;
}

public int absoluteDay() {
 Date temp = new Date(1, 1);
 int count = 1;
 while (day != temp.day || month != temp.month) {
 count++;
 temp.nextDay();
 }
 return count;
}

public int absoluteDay() {
 int count = day;
 Date temp = new Date(1, 1);
 for (int i = 1; i < month; i++) {
 count += temp.daysInMonth();
 temp.month++;
 }
 return count;
}

public int absoluteDay() {
 int count = 0;
 for (int i = 1; i <= month - 1; i++) {
 if (i == 4 || i == 6 || i == 9 || i == 11) {
 count += 30;
 } else if (i == 2) {
 count += 28;
 } else {
 count += 31;
 }
 }
 count += day;
 return count;
}

public int absoluteDay() {
 int[] dayCount = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 int count = 0;
 for (int i = 1; i <= month - 1; i++) {
 count += dayCount[i - 1];
 }
 return count + day;
}

public int absoluteDay() {
 Date copy = new Date(month, day);
 int count = 365;
 while (copy.getMonth() != 12 || copy.getDay() != 31) {
 copy.nextDay();
 count--;
 }
 return count;
}

17 of 17

public int absoluteDay() {
 int oldMonth = month;
 int oldDay = day;
 int count = 0;
 while (month != 12 || day != 31) {
 nextDay();
 count++;
 }
 month = oldMonth;
 day = oldDay;
 return 365 - count;
}

public int absoluteDay() {
 int oldMonth = month;
 month = 0;
 int count = 0;
 for (int i = 1; i < oldMonth; i++) {
 month = i;
 count += daysInMonth();
 }
 count += day;
 return count;
}

public int absoluteDay() {
 int oldMonth = month;
 int count = 0;
 for (int i = month; i > 1; i--) {
 month--;
 count += daysInMonth();
 }
 count += day;
 month = oldMonth;
 return count;
}

