
1 of 14

CSE 142 Sample Final Exam #6
(based on Summer 2008's final; thanks to Hélène Martin)

1. Array Mystery

Consider the following method:

public static void arrayMystery(String[] a) {

 for (int i = 0; i < a.length; i++) {

 a[i] = a[i] + a[a.length - 1 - i];

 }

}

Indicate in the right-hand column what values would be stored in the array after the method arrayMystery executes

if the array in the left-hand column is passed as a parameter to it.

Original Contents of Array Final Contents of Array

String[] a1 = {"a", "b", "c"};

arrayMystery(a1);

String[] a2 = {"a", "bb", "c", "dd"};

arrayMystery(a2);

String[] a3 = {"z", "y", "142", "w", "xx"};

arrayMystery(a3);

2 of 14

2. Reference Semantics Mystery

The following program produces 4 lines of output. Write the output below, as it would appear on the console.

public class Pokemon {

 int level;

 public Pokemon(int level) {

 this.level = level;

 }

}

public class ReferenceMystery {

 public static void main(String[] args) {

 int hp = 10;

 Pokemon squirtle = new Pokemon(5);

 battle(squirtle, hp);

 System.out.println("Level " + squirtle.level + ", " + hp + " hp");

 hp = hp + squirtle.level;

 battle(squirtle, hp + 1);

 System.out.println("Level " + squirtle.level + ", " + hp + " hp");

 }

 public static void battle(Pokemon poke, int hp) {

 poke.level++;

 hp -= 5;

 System.out.println("Level " + poke.level + ", " + hp + " hp");

 }

}

3 of 14

3. Inheritance Mystery

Assume that the following classes have been defined:

public class Dog extends Cat {

 public void m1() {

 m2();

 System.out.print("dog 1 ");

 }

}

public class Lion extends Dog {

 public void m2() {

 System.out.print("lion 2 ");

 super.m2();

 }

 public String toString() {

 return "lion";

 }

}

public class Cat {

 public void m1() {

 System.out.print("cat 1 ");

 }

 public void m2() {

 System.out.print("cat 2 ");

 }

 public String toString() {

 return "cat";

 }

}

Given the classes above, what output is produced by the following code?

Cat[] elements = {new Dog(), new Cat(), new Lion()};

for (int i = 0; i < elements.length; i++) {

 elements[i].m1();

 System.out.println();

 elements[i].m2();

 System.out.println();

 System.out.println(elements[i]);

 System.out.println();

}

4 of 14

4. File Processing

Write a static method evaluate that accepts as a parameter a Scanner containing a series of tokens representing a

numeric expression involving addition and subtraction and that returns the value of the expression. For example, if a

Scanner called data contains the following tokens:

4.2 + 3.4 - 4.1

The call of evaluate(data); should evaluate the result as (4.2+3.4-4.1) = (7.6-4.1) = 3.5 and should return this

value as its result. Every expression will begin with a real number and then will have a series of operator/number

pairs that follow. The operators will be either + (addition) or - (subtraction). As in the example above, there will be

spaces separating numbers and operators. You may assume the expression is legal.

Your program should evaluate operators sequentially from left to right. For example, for this expression:

7.3 - 4.1 - 2.0

your method should evaluate the operators as follows:

7.3 - 4.1 - 2.0 = (7.3 - 4.1) - 2.0 = 3.2 - 2.0 = 1.2

The Scanner might contain just a number, in which case your method should return that number as its result.

5 of 14

5. File Processing

Write a static method blackjack that accepts as its parameter a Scanner for an input file containing a hand of

playing cards, and returns the point value of the hand in the card game Blackjack.

A card has a rank and a suit. There are 13 ranks: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. There are 4

suits: Clubs, Diamonds, Hearts, and Spades. A Blackjack hand's point value is the sum of its cards' point values. A

card's point value comes from its rank; the suit is irrelevant. In this problem, cards are worth the following points:

Rank Point Value

2-10 The card's rank (for example, a 7 is worth 7 points)

Jack (J), Queen (Q), King (K) 10 points each

Ace (A) 11 points (for this problem; simplified compared to real Blackjack)

The input file contains a single hand of cards, each represented by a pair of "<rank> <suit>" tokens. For example:

5 Diamonds
Q Spades
2 Spades 3 Hearts

Given the above input, your method should return 20, since the cards' point values are 5 + 10 + 2 + 3 = 20.

The input can be in mixed casing, have odd spacing between tokens, and can be split across lines. For example:

2 Hearts
 j SPADES a Diamonds
2 ClUbS
 A
hearts

Given the above input, your method should return 36, since the cards' point values are 2 + 10 + 11 + 2 + 11 = 36.

You may assume that the Scanner contains at least 1 card (two tokens) of input, and that no line will contain any

tokens other than valid card data. The real game of Blackjack has many other rules that you should ignore for this

problem, such as the notion of going "bust" once you exceed a score of 21.

6 of 14

6. Array Programming

Write a static method named allPlural that accepts an array of strings as a parameter and returns true only if

every string in the array is a plural word, and false otherwise. For this problem a plural word is defined as any

string that ends with the letter S, case-insensitively. The empty string "" is not considered a plural word, but the

single-letter string "s" or "S" is. Your method should return true if passed an empty array (one with 0 elements).

The table below shows calls to your method and the expected values returned:

Array Call and Value Returned
String[] a1 = {"snails", "DOGS", "Cats"}; allPlural(a1) returns true
String[] a2 = {"builds", "Is", "S", "THRILLs", "CS"}; allPlural(a2) returns true
String[] a3 = {}; allPlural(a3) returns true
String[] a4 = {"She", "sells", "sea", "SHELLS"}; allPlural(a4) returns false
String[] a5 = {"HANDS", "feet", "toes", "OxEn"}; allPlural(a5) returns false
String[] a6 = {"shoes", "", "socks"}; allPlural(a6) returns false

For full credit, your method should not modify the array's elements.

7 of 14

7. Array Programming

Write a static method named reverseChunks that accepts two parameters, an array of integers a and an integer

"chunk" size s, and reverses every s elements of a. For example, if s is 2 and array a stores {1, 2, 3, 4, 5, 6},

a is rearranged to store {2, 1, 4, 3, 6, 5}. With an s of 3 and the same elements {1, 2, 3, 4, 5, 6}, array

a is rearranged to store {3, 2, 1, 6, 5, 4}. The chunks on this page are underlined for convenience.

If a's length is not evenly divisible by s, the remaining elements are untouched. For example, if s is 4 and array a

stores {5, 4, 9, 2, 1, 7, 8, 6, 2, 10}, a is rearranged to store {2, 9, 4, 5, 6, 8, 7, 1, 2, 10}.

It is also possible that s is larger than a's entire length, in which case the array is not modified at all. You may assume

that s is 1 or greater (an s of 1 would not modify the array). If array a is empty, its contents should remain unchanged.

The following table shows some calls to your method and their expected results:

Array and Call Array Contents After Call
int[] a1 = {20, 10, 30, 60, 50, 40};

reverseChunks(a1, 2);

{10, 20, 60, 30, 40, 50}

int[] a2 = {2, 4, 6, 8, 10, 12, 14, 16};

reverseChunks(a2, 3);

{6, 4, 2, 12, 10, 8, 14, 16}

int[] a3 = {7, 1, 3, 5, 9, 8, 2, 6, 4, 10, 0, 12};

reverseChunks(a3, 5);

{9, 5, 3, 1, 7, 10, 4, 6, 2, 8, 0, 12}

int[] a4 = {1, 2, 3, 4, 5, 6};

reverseChunks(a4, 8);

{1, 2, 3, 4, 5, 6}

int[] a5 = {};

reverseChunks(a5, 2);

{}

8 of 14

8. Critters

Write a class Minnow that extends Critter from HW8, along with its movement and eating behavior. All other

aspects of Minnow use the defaults. Add fields, constructors, etc. as necessary to your class.

Minnow objects initially move in a S/E/S/E/... pattern. However, when a Minnow encounters food (when its eat

method is called), it should do all of the following:

• Do not eat the food.

• Start the movement cycle over. In other words, the next move after eat is called should always be South.

• Lengthen and reverse the horizontal portion of the movement cycle pattern.

The Minnow should reverse its horizontal direction and increase its horizontal movement distance by 1 for

subsequent cycles. For example, if the Minnow had been moving S/E/S/E, it will now move S/W/W/S/W/W. If

it hits a second piece of food, it will move S/E/E/E/S/E/E/E, and a third, S/W/W/W/W/S/W/W/W/W, and so on.

The following is an example timeline of a particular Minnow object's movement. The

timeline below is also drawn in the diagram at right. Underlined occurrences mark squares

where the Minnow found food.

• S, E, S, E (hits food)

• S, W, W, S, W, W, S (hits food)

• S, E, E, E, S, E, E, E, S, E (hits food)

• S (hits food)

• S, E, E, E, E, E, S, E, E, E, E, E, ...

 ?
 ??
 ??
 ???
 ???
 ?
 ????
 ????
 ??
 ?
 ??????

9 of 14

9. Classes and Objects

Suppose that you are provided with a pre-written class Date as

described at right. (The headings are shown, but not the method

bodies, to save space.) Assume that the fields, constructor, and

methods shown are already implemented. You may refer to them

or use them in solving this problem if necessary.

Write an instance method named bound that will be placed inside

the Date class to become a part of each Date object's behavior.

The bound method constrains a Date to within a given range of

dates. It accepts two other Date objects d1 and d2 as parameters;

d1's date is guaranteed to represent a date that comes no later in

the year than d2's date.

The bound method makes sure that this Date object is between

d1's and d2's dates, inclusive. If this Date object is not between

those dates inclusive, it is adjusted to the nearest date in the

acceptable range. The method returns a result of true if this

Date was within the acceptable range, or false if it was shifted.

For example, given the following Date objects:

Date date1 = new Date(7, 12);

Date date2 = new Date(10, 31);

Date date3 = new Date(9, 19);

Date bound1 = new Date(8, 4);

Date bound2 = new Date(9, 26);

Date bound3 = new Date(12, 25);

The following calls to your method should adjust the given Date

objects to represent the following dates and should return the

following results:

call date becomes returns
date1.bound(bound1, bound2) 8/4 false

date2.bound(bound1, bound2) 9/26 false

date3.bound(bound1, bound3) 9/19 true

date2.bound(bound3, bound3) 12/25 false

// Each Date object stores a single

// month/day such as September 19.

// This class ignores leap years.

public class Date {

 private int month;

 private int day;

 // Constructs a date with

 // the given month and day.

 public Date(int m, int d)

 // Returns the date's day.

 public int getDay()

 // Returns the date's month.

 public int getMonth()

 // Returns the number of days

 // in this date's month.

 public int daysInMonth()

 // Modifies this date's state

 // so that it has moved forward

 // in time by 1 day, wrapping

 // around into the next month

 // or year if necessary.

 // example: 9/19 -> 9/20

 // example: 9/30 -> 10/1

 // example: 12/31 -> 1/1

 public void nextDay()

 // your method would go here

}

10 of 14

Solutions

1. Array Mystery
Call
String[] a1 = {"a", "b", "c"};

arrayMystery(a1);

String[] a2 = {"a", "bb", "c", "dd"};

arrayMystery(a2);

String[] a3 = {"z", "y", "142", "w", "xx"};

arrayMystery(a3);

Final Contents of Array
["ac", "bb", "cac"]

["add", "bbc", "cbbc", "ddadd"]

["zxx", "yw", "142142", "wyw", "xxzxx"]

2. Reference Semantics Mystery
Level 6, 5 hp

Level 6, 10 hp

Level 7, 12 hp

Level 7, 16 hp

3. Inheritance Mystery
cat 2 dog 1

cat 2

cat

cat 1

cat 2

cat

lion 2 cat 2 dog 1

lion 2 cat 2

lion

4. File Processing
public static double evaluate(Scanner input) {

 double result = input.nextDouble();

 while (input.hasNext()) {

 String operator = input.next();

 double num = input.nextDouble();

 if (operator.equals("+")) {

 result += num;

 } else { // operator.equals("-")

 result -= num;

 }

 }

 return result;

}

11 of 14

5. File Processing (three solutions shown)
public static int blackjack(Scanner input) {
 int total = 0;
 while (input.hasNext()) {
 if (input.hasNextInt()) {
 total += input.nextInt();
 } else {
 String token = input.next().toLowerCase();
 if (token.equals("j") || token.equals("q") || token.equals("k")) {
 total += 10; // jack/queen/king
 } else {
 total += 11; // ace
 }
 }
 input.next(); // suit
 }

 return total;
}

public static int blackjack(Scanner input) {
 int total = 0;
 while (input.hasNext()) {
 if (input.hasNextInt()) {
 total += input.nextInt();
 } else {
 String token = input.next().toLowerCase();
 if (token.equals("a")) {
 total += 11;
 } else if (token.equals("j") || token.equals("q") || token.equals("k")) {
 total += 10; // jack/queen/king
 }
 }
 }
 return total;
}

public static int blackjack(Scanner input) {
 int total = 0;
 while (input.hasNext()) {
 if (input.hasNextInt()) {
 total += input.nextInt();
 } else {
 String token = input.next().toLowerCase();
 if (token.equals("a")) {
 total += 11;
 } else {
 total += 10; // jack/queen/king
 }
 }
 input.next(); // suit
 }

 return total;
}

12 of 14

6. Array Programming (three solutions shown)
public static boolean allPlural(String[] a) {
 for (int i = 0; i < a.length; i++) {
 if (a[i].length() == 0) {
 return false;
 }
 char c = a[i].charAt(a[i].length() - 1);
 if (c != 's' && c != 'S') {
 return false;
 }
 }

 return true;
}

public static boolean allPlural(String[] a) {
 int count = 0;
 for (int i = 0; i < a.length; i++) {
 if (a[i].endsWith("s") || a[i].endsWith("S")) {
 count++;
 }
 }

 if (count == a.length) {
 return true;
 } else {
 return false;
 }
}

public static boolean allPlural(String[] a) {
 for (int i = 0; i < a.length; i++) {
 if (!a[i].toLowerCase().endsWith("s")) {
 return false;
 }
 }
 return true;
}

13 of 14

7. Array Programming (six solutions shown)

public static void reverseChunks(int[] a, int size) {
 for (int i = 0; i + size - 1 < a.length; i += size) {
 int left = i;
 int right = i + size - 1;
 while (left < right) {
 int temp = a[left];
 a[left] = a[right];
 a[right] = temp;
 left++;
 right--;
 }
 }
}

public static void reverseChunks(int[] a, int size) {
 for (int i = 0; i < a.length; i++) {
 if (i % size == 0 && i <= a.length - size) {
 for (int j = 0; j < size / 2; j++) {
 int temp = a[i + j];
 a[i + j] = a[i + size - j - 1];
 a[i + size - j - 1] = temp;
 }
 }
 }
}

public static void reverseChunks(int[] a, int size) {
 if (size <= a.length) {
 for (int i = 0; i < a.length; i++) {
 int j = (i - i % size) + size - 1 - i % size;
 if (j > i && j < a.length) {
 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }
 }
 }
}

public static void reverseChunks(int[] a, int s) {
 for (int i = 0; i < a.length / s; i++) {
 for (int j = 0; j < s / 2; j++) {
 int temp = a[i * s + j];
 a[i * s + j] = a[(i + 1) * s - 1 - j];
 a[(i + 1) * s - 1 - j] = temp;
 }
 }
}

public static void reverseChunks(int[] a, int s) {
 for (int i = 0; i < a.length / s; i++) {
 int[] b = new int[s];
 for (int j = 0; j < s; j++) {
 b[s - 1 - j] = a[i * s + j];
 }

 for (int j = 0; j < s; j++) {
 a[i * s + j] = b[j];
 }
 }
}

public static void reverseChunks(int[] a, int size) {
 for (int i = 0; i <= a.length - size; i += size) {
 for (int j = 0; j < size / 2; j++) {
 int temp = a[i + j];
 a[i + j] = a[i + size - j - 1];
 a[i + size - j - 1] = temp;
 }
 }
}

14 of 14

8. Critters (two solutions shown)
public class Minnow extends Critter {
 private int cycleLength;
 private int cycleStep;

 public Minnow() {
 cycleLength = 1;
 cycleStep = 0;
 }

 public boolean eat() {
 cycleLength++;
 cycleStep = 0;
 return false;
 }

 public Direction getMove() {
 if (cycleStep == 0) {
 cycleStep++;
 return Direction.SOUTH;
 } else if (cycleStep < cycleLength) {
 cycleStep++;
 } else {
 cycleStep = 0;
 }

 if (cycleLength % 2 == 1) {
 return Direction.EAST;
 } else {
 return Direction.WEST;
 }
 }
}

public class Minnow extends Critter {
 private Direction currHoriz;
 private int cycleLength;
 private int cycleStep;

 public Minnow() {
 currHoriz = Direction.EAST;
 cycleLength = 1;
 cycleStep = 0;
 }

 public boolean eat() {
 cycleLength++;
 cycleStep = 0;
 if (currHoriz == Direction.EAST) {
 currHoriz = Direction.WEST;
 } else {
 currHoriz = Direction.EAST;
 }
 return false;
 }

 public Direction getMove() {
 if (cycleStep == 0) {
 cycleStep++;

 return Direction.SOUTH;
 } else if (cycleStep < cycleLength) {
 cycleStep++;
 return currHoriz;
 } else {
 cycleStep = 0;
 return currHoriz;
 }
 }
}

9. Classes and Objects
public boolean bound(Date d1, Date d2) {
 if (month < d1.month || (month == d1.month && day < d1.day)) {
 month = d1.month;
 day = d1.day;
 return false;
 } else if (month > d2.month || (month == d2.month && day > d2.day)) {
 month = d2.month;
 day = d2.day;
 return false;
 } else {
 return true;
 }
}

