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Cheat Sheet 

Inheritance (9.1 - 9.2) 

public class name extends superclass { 
 

• inheritance: Forming a new class based on an existing class. 

• extend: To inherit from another class. 

• superclass: The "parent" class; the class being extended. 

• subclass: The "child" class; the class extending another. 

• override: To replace a superclass method with a new one. 

super keyword (9.3) 

Calling an overridden method from the superclass: 

super.method(parameters) 

Calling a constructor from the superclass: 

super(parameters); 

 

 

Polymorphism puzzles 
public class Class1 { 

    public void method1() { 

        System.out.print("C1 m1   "); 

        method2(); 

    } 

 

    public void method2() { 

        System.out.print("C1 m2   "); 

    } 

} 

public class Class2 extends Class1 { 

    public void method1() { 

        super.method1(); 

        System.out.print("C2 m1   "); 

    } 

  

    public void method2() { 

        System.out.print("C2 m2   "); 

    } 

} 

The following would be the output from creating an object of each of the above classes and calling its methods: 

Class1 var1 = new Class1();     // Output: 
var1.method1();                 // C1 m1   C1 m2 
var1.method2();                 // C1 m2 
 
Class2 var2 = new Class2(); 
var2.method1();                 // C1 m1   C2 m2   C2 m1 
var2.method2();                 // C2 m2 

Other inheritance notes 

• Subclasses cannot directly access private fields they inherit. 

• Subclasses do not inherit constructors.  If the superclass has one that requires parameters, the subclass must also. 

public class Employee { 
  private int years; 
    
  public Employee(int years) { 
    this.years = years; 
  } 
   
  public int getHours() { 
    return 40; 
  } 
   
  public double getSalary() { 
    return 50000.0; 
  } 
   
  public int getVacationDays() { 
    return 10 + 2 * years; 
  } 
 
  public int getYears() { 
    return years; 
  } 
} 
 
public class Lawyer extends Employee { 
  public Lawyer(int years) { 
    super(years); 
  } 
 
  public double getSalary() { 
    return super.getSalary() + 
           5000.0 * getYears(); 
  } 
   
  public int getVacationDays() { 
    return super.getVacationDays() + 5; 
  } 
} 
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Sample Final Exam #5 
(based on Autumn 2006's final; thanks to Ruth Anderson) 

 

1. Array Mystery 
Consider the following method: 

public static void arrayMystery(int[] array) { 

    for (int i = 0; i < array.length - 1; i++) { 

        if (array[i] < array[i + 1]) { 

            array[i] = array[i + 1]; 

        } 

    } 

} 

Indicate in the right-hand column what values would be stored in the array after the method mystery executes if the 

integer array in the left-hand column is passed as a parameter to mystery. 

 

Original Contents of Array Final Contents of Array 
 

int[] a1 = {2, 4}; 

arrayMystery(a1); 

 

int[] a2 = {1, 3, 6}; 

arrayMystery(a2); 

 

int[] a3 = {7, 2, 8, 4}; 

arrayMystery(a3); 

 

int[] a4 = {5, 2, 7, 2, 4}; 

arrayMystery(a4); 

 

int[] a5 = {2, 4, 6, 3, 7, 9}; 

arrayMystery(a5); 

 

 

_____________________________ 

 

 

_____________________________ 

 

 

_____________________________ 

 

 

_____________________________ 

 

 

_____________________________ 
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2. Reference Semantics Mystery 
The following program produces 4 lines of output.  Write the output below, as it would appear on the console. 

import java.util.*;   // for Arrays class 

 

public class Mystery {  

    public static void main(String[] args) {  

        int x = 1;  

        int[] a = new int[4];  

 

        x = x * 2;  

        mystery(x, a);  

        System.out.println(x + " " + Arrays.toString(a));  

 

        x = x * 2;  

        mystery(x, a);  

        System.out.println(x + " " + Arrays.toString(a));  

    }  

 

    public static void mystery(int x, int[] a) {  

        x = x * 2;  

 

        if (x > 6) {  

            a[2] = 14;  

            a[1] = 9;  

        } else {  

            a[0] = 9;  

            a[3] = 14;  

        }  

 

        System.out.println(x + " " + Arrays.toString(a));  

    }  

} 
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3. Inheritance Mystery 
Assume that the following classes have been defined: 

public class Ice extends Fire { 

    public void method1() { 

        System.out.print("Ice 1   "); 

    } 

} 

 

public class Rain extends Fire { 

    public String toString() { 

        return "Rain"; 

    } 

     

    public void method1() { 

        super.method1(); 

        System.out.print("Rain 1   "); 

    } 

} 

public class Fire { 

    public String toString() { 

        return "Fire"; 

    } 

     

    public void method1() { 

        method2(); 

        System.out.print("Fire 1   "); 

    } 

     

    public void method2() { 

        System.out.print("Fire 2   "); 

    } 

} 

 

public class Snow extends Rain { 

    public void method2() { 

        System.out.print("Snow 2   "); 

    } 

} 

 

Given the classes above, what output is produced by the following code? 

Fire[] elements = {new Fire(), new Snow(), new Rain(), new Ice()}; 

for (int i = 0; i < elements.length; i++) { 

    System.out.println(elements[i]); 

    elements[i].method1(); 

    System.out.println(); 

    elements[i].method2(); 

    System.out.println(); 

    System.out.println(); 

} 
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4. File Processing 
Write a static method named halfCaps that accepts as its parameter a Scanner holding a sequence of words and 

outputs to the console the same sequence of words with alternating casing (lowercase, uppercase, lowercase, 

uppercase, etc).  The first word, third word, fifth word, and all other "odd" words should be in lowercase letters, 

whereas the second word, fourth word, sixth word, and all other "even" words should be in uppercase letters.  For 

example, suppose the Scanner contains the following words. 

The QUick brown foX jumPED over the Sleepy student 

For the purposes of this problem, we will use whitespace to separate words.  You can assume that the sequence of 

words will not contain any numbers or punctuation and that each word will be separated by one space.  For the input 

above, your method should produce the following output: 

the QUICK brown FOX jumped OVER the SLEEPY student   

Your output should separate each word by a single space.  The output may end with a space if you like.  Note that the 

Scanner may contain no words or may contain an even or odd number of words. 

 

 

 

5. File Processing 
Write a static method named countWords that accepts as its parameter a Scanner for an input file, and that outputs 

to the console the total number of lines and words found in the file as well as the average number of words per line.  

For example, consider the following input file: 

You must show: your Student ID card  

 

to 1) a TA or 2) the instructor  

before 

 

leaving the room.  

For the purposes of this problem, we will use whitespace to separate words.  That means that some words might 

include punctuation, as in "show:" and "1)".  (This is the same definition that the Scanner uses for tokens.)  For 

the input above, your method should produce the following output: 

Total lines = 6 

Total words = 19 

Average words per line = 3.167 

The format of your output must exactly match that shown above, including rounding the words per line to 3 decimal 

places.  Notice that input lines can be blank.  You may assume that the Scanner contains at least 1 line of input. 
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6. Array Programming 
Write a static method named mode that takes an array of integers as a parameter and that returns the value that occurs 

most frequently in the array.  Assume that the integers in the array appear in sorted order.  For example, if a variable 

called list stores the following values: 

int[] list = {-3, 1, 4, 4, 4, 6, 7, 8, 8, 8, 8, 9, 11, 11, 11, 12, 14, 14}; 

Then the call of mode(list) should return 8 because 8 is the most frequently occurring value in the array, appearing 

four times. 

If two or more values tie for the most occurrences, return the one with the lowest value.  For example, if the array 

stores the following values, the call of mode(list) should return 2 despite the fact that there are also three 9s: 

int[] list = {1, 2, 2, 2, 5, 7, 9, 9, 9}; 

If the array's elements are unique, every value occurs exactly once, so the first element value should be returned.  You 

may assume that the array's length is at least 1.  If the array contains only one element, that element's value is 

considered the mode. 

 

 

 

7. Array Programming 
Write a static method named contains that accepts two arrays of integers a1 and a2 as parameters and that returns a 

boolean value indicating whether or not a2's sequence of elements appears in a1 (true for yes, false for no).  The 

sequence of elements in a2 may appear anywhere in a1 but must appear consecutively and in the same order.  For 

example, if variables called list1 and list2 store the following values: 

int[] list1 = {1, 6, 2, 1, 4, 1, 2, 1, 8}; 

int[] list2 = {1, 2, 1}; 

Then the call of contains(list1, list2) should return true because list2's sequence of values {1, 2, 1} is 

contained in list1 starting at index 5.  If list2 had stored the values {2, 1, 2}, the call of contains(list1, 

list2) would return false because list1 does not contain that sequence of values.  Any two lists with identical 

elements are considered to contain each other, so a call such as contains(list1, list1) should return true. 

You may assume that both arrays passed to your method will have lengths of at least 1.  You may not use any 

Strings to help you solve this problem, nor methods that produce Strings such as Arrays.toString. 
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8. Critters 

Write a class Shark that extends the Critter class from Homework 8.  Shark objects should alternate between 

moving to the north and south as follows: first move 1 step north, then 2 steps south, then 3 steps north, then 4 steps 

south, then 5 steps north, then 6 steps south, and so on, each time moving one farther than previously. 

You may add anything needed (fields, other methods, constructors, etc.) to implement this behavior appropriately. 

 

 

 

 

 

9. Classes and Objects 

Suppose that you are provided with a pre-written class ClockTime as 

described at right.  (The headings are shown, but not the method 

bodies, to save space.)  Assume that the fields, constructor, and 

methods shown are already implemented.  You may refer to them or 

use them in solving this problem if necessary. 

Write an instance method named advance that will be placed inside 

the ClockTime class to become a part of each ClockTime object's 

behavior.  The advance method accepts a number of minutes as its 

parameter and moves the ClockTime object forward in time by that 

amount of minutes.  The minutes passed could be any non-negative 

number, even a large number such as 500 or 1000000.  If necessary, 

your object might wrap into the next hour or day, or it might wrap 

from the morning ("AM") to the evening ("PM") or vice versa.  A 

ClockTime object doesn't care about what day it is; if you advance 

by 1 minute from 11:59 PM, it becomes 12:00 AM. 

For example, if the following object is declared in client code: 

ClockTime time = new ClockTime(6, 27, "PM"); 

The following calls to your method would modify the object's state as 

indicated in the comments. 

time.advance(1);       //  6:28 PM 

time.advance(30);      //  6:58 PM 

time.advance(5);       //  7:03 PM 

time.advance(60);      //  8:03 PM 

time.advance(128);     // 10:11 PM 

time.advance(180);     //  1:11 AM 

time.advance(1440);    //  1:11 AM  (1 day later) 

time.advance(21075);   //  4:26 PM  (2 weeks later) 

Assume that the state of the ClockTime object is valid at the start of 

the call and that the amPm field stores either "AM" or "PM". 

 

// A ClockTime object represents 
// an hour:minute time during 
// the day or night, such as 
// 10:45 AM or 6:27 PM. 
 
public class ClockTime { 
    private int hour; 
    private int minute; 
    private String amPm; 
     
 
    // Constructs a new time for 
    // the given hour/minute 
    public ClockTime(int h, 
            int m, String ap) 
     
    // returns the field values 
    public int getHour() 
    public int getMinute() 
    public String getAmPm() 
 
    // returns String for time; 
    // example: "6:27 PM" 
    public String toString() 
 
 
    // your method would go here 
 
} 
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Solutions 

1. 
Array                                  Final contents 
--------------------------------------------------------- 
{2, 4}                                 {4, 4} 
{1, 3, 6}                              {3, 6, 6} 
{7, 2, 8, 4}                           {7, 8, 8, 4} 
{5, 2, 7, 2, 4}                        {5, 7, 7, 4, 4} 
{2, 4, 6, 3, 7, 9}                     {4, 6, 6, 7, 9, 9} 

2. 
4 [9, 0, 0, 14] 
2 [9, 0, 0, 14] 
8 [9, 9, 14, 14] 
4 [9, 9, 14, 14] 

3. 
Fire 
Fire 2   Fire 1 
Fire 2 
 
Rain 
Snow 2   Fire 1   Rain 1 
Snow 2 
 
Rain 
Fire 2   Fire 1   Rain 1 
Fire 2 
 
Fire 
Ice 1 
Fire 2 
 

 

4. Three solutions are shown. 
 
public static void halfCaps(Scanner input) { 
    boolean odd = true; 
    while (input.hasNext()) { 
        String next = input.next(); 
        if (odd) { 
            System.out.print(next.toLowerCase() + " "); 
        } else { 
            System.out.print(next.toUpperCase() + " "); 
        } 
        odd = !odd; 
    } 
} 
 
public static void halfCaps(Scanner input) { 
    int count = 0; 
    while (input.hasNext()) { 
        if (count % 2 == 0) { 
            System.out.print(input.next().toLowerCase() + " "); 
        } else { 
            System.out.print(input.next().toUpperCase() + " "); 
        } 
        count++; 
    } 
} 
 
public static void halfCaps(Scanner input) { 
    while (input.hasNext()) { 
        System.out.print(input.next().toLowerCase() + " "); 
        if (input.hasNext()) { 
            System.out.print(input.next().toUpperCase() + " "); 
        } 
    } 
} 
 

5. 
public static void countWords(Scanner input) { 
    int lineCount = 0; 
    int wordCount = 0; 
     
    while (input.hasNextLine()) { 
        String line = input.nextLine(); 
        lineCount++; 
        Scanner lineScan = new Scanner(line); 
        while (lineScan.hasNext()) { 
            String next = lineScan.next(); 
            wordCount++; 
        } 
    } 
     
    double averageWords = (double) wordCount / lineCount; 
    System.out.println("Total lines = " + lineCount); 
    System.out.println("Total words = " + wordCount); 
    System.out.printf("Average words per line = %.3f\n", averageWords); 
} 
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6. 
 
public static int mode(int[] a) { 
    int count = 1; 
    int maxCount = 1; 
    int modeValue = a[0]; 
 
    for (int i = 0; i < a.length - 1; i++) { 
        if (a[i] == a[i + 1]) { 
            count++; 
            if (count > maxCount) { 
                modeValue = a[i]; 
                maxCount = count; 
            } 
        } else { 
            count = 1; 
        } 
    } 
 
    return modeValue; 
} 
 

7. Four solutions are shown. 
 
public static boolean contains(int[] a1, int[] a2) { 
    for (int i = 0; i <= a1.length - a2.length; i++) { 
        boolean found = true; 
        for (int j = 0; j < a2.length; j++) { 
            if (a1[i + j] != a2[j]) { 
                found = false; 
            } 
        } 
        if (found) { 
            return true; 
        } 
    } 
    return false; 
} 
 
// varation of first solution that uses count instead of boolean 
public static boolean contains(int[] a1, int[] a2) { 
    for (int i = 0; i <= a1.length - a2.length; i++) { 
        int count = 0; 
        for (int j = 0; j < a2.length; j++) { 
            if (a1[i + j] == a2[j]) 
                count++; 
        } 
        if (count == a2.length) 
            return true; 
    } 
    return false; 
} 
 
public static boolean contains(int[] a1, int[] a2) { 
    int i1 = 0; 
    int i2 = 0; 
    while (i1 < a1.length && i2 < a2.length) { 
        if (a1[i1] != a2[i2]) {  // doesn't match; start over 
            i2 = 0; 
        } 
        if (a1[i1] == a2[i2]) { 
            i2++; 
        } 
        i1++; 
    } 
 
    return i2 >= a2.length; 
} 
 
public static boolean contains(int[] a1, int[] a2) { 
    for (int i = 0; i < a1.length; i++) { 
        int j = 0; 
        while (j < a2.length && i + j < a1.length && a1[i + j] == a2[j]) 
            j++; 
        if (j == a2.length) 
            return true; 
    } 
    return false; 
} 
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8. Two solutions are shown. 
 
public class Shark extends Critter { 
    private int count; 
    private int max; 
    private Direction direction; 
     
    public Shark() { 
        count = 0; 
        max = 1; 
        direction = Direction.NORTH; 
    } 
     
    public Direction getMove() { 
        count++; 
        if (count > max) { 
            count = 1; 
            max++; 
            if (direction == Direction.NORTH) { 
                direction = Direction.SOUTH; 
            } else { 
                direction = Direction.NORTH; 
            } 
        } 
        return direction; 
    } 
} 
 
public class Shark extends Critter { 
    private int count = 0; 
    private int max = 1; 
     
    public Direction getMove() { 
        count++; 
        if (count > max) { 
            count = 1; 
            max++; 
        } 
        if (max % 2 == 0) { 
            return Direction.SOUTH; 
        } else { 
            return Direction.NORTH; 
        } 
    } 
} 

9. Two solutions are shown. 
 
public void advance(int mins) { 
    minute += mins;                 // add into 'minute' field, then pull hours out 1 at a time 
    while (minute >= 60) { 
        minute -= 60; 
        hour++; 
        if (hour == 12) { 
            if (amPm.equals("AM")) { 
                amPm = "PM"; 
            } else { 
                amPm = "AM"; 
            } 
        } else if (hour > 12) { 
            hour = 1; 
        } 
    } 
} 
 
public void advance(int mins) { 
    int totalMinutes = hour % 12 * 60 + minute;   // convert into absolute minutes representation 
    if (amPm.equals("PM")) { 
        totalMinutes += 12 * 60;   // add 12 hours for PM 
    } 
    totalMinutes = (totalMinutes + mins) % (24 * 60);   // move forward; throw away extra days 
    hour = totalMinutes / 60;                           // convert back to hour/minute/amPm 
    minute = totalMinutes % 60; 
    if (hour >= 12) { amPm = "PM"; } 
    else            { amPm = "AM"; } 
    if (hour == 0)  { hour = 12; } 
    else            { hour = hour % 12; } 
} 


