
CSE 143 Sample Final Exam #4

1. Inheritance and Polymorphism.
Consider the following classes
(System.out.println has been
abbreviated as S.o.pln):

public class Eye extends Mouth {
 public void method1() {
 S.o.pln("Eye 1");
 super.method1();
 }
}

public class Mouth {
 public void method1() {
 S.o.pln("Mouth 1");
 }

 public void method2() {
 S.o.pln("Mouth 2");
 method1();
 }
}

public class Nose extends Eye {
 public void method1() {
 S.o.pln("Nose 1");
 }

 public void method3() {
 S.o.pln("Nose 3");
 }
}

public class Ear extends Eye {
 public void method2() {
 S.o.pln("Ear 2");
 }

 public void method3() {
 S.o.pln("Ear 3");
 }
}

The following variables are defined:

Mouth var1 = new Nose();
Ear var2 = new Ear();
Mouth var3 = new Eye();
Object var4 = new Mouth();
Eye var5 = new Nose();
Mouth var6 = new Ear();

In the table below, indicate in the right-hand column the output
produced by the statement in the left-hand column. If the
statement produces more than one line of output, indicate the
line breaks with slashes as in "a / b / c" to indicate three lines of
output with "a" followed by "b" followed by "c". If the
statement causes an error, fill in the right-hand column with the
phrase "error" to indicate this.

Statement

var1.method1();

var2.method1();

var3.method1();

var1.method2();

var2.method2();

var3.method2();

var4.method2();

var5.method2();

var6.method2();

var1.method3();

var2.method3();

var3.method3();

((Nose) var5).method3();

((Eye) var1).method1();

((Eye) var4).method1();

((Nose) var1).method3();

((Mouth) var4).method1();

((Ear) var5).method3();

((Eye) var6).method3();

((Mouth) var4).method2();

Output

2. Inheritance and Comparable. You have been asked to extend the ArrayIntList class that we have
been studying. Recall that it includes the following public constructors and methods:

public ArrayIntList() constructs an empty list with default capacity
public ArrayIntList(int capacity) constructs an empty list with the given capacity
public void add(int value) adds given value to end of list
public void add(int index, int value) adds given value at given index
public boolean contains(int value) returns whether value occurs anywhere in the list
public int get(int index) returns value at given index
public int indexOf(int value) index of first occurrence of value; -1 if not found
public boolean isEmpty() returns whether list contains no elements
public void remove(int index) removes the value at the given index
public int set(int index, int value) sets element at given index to store given value
public int size() returns number of elements in list
public String toString() returns comma-separated string version of list

You are to define a new class called HistoryList that extends this class through inheritance. It
should behave like an ArrayIntList except that it should keep track of the history of modifications to the
list. This history is stored as a sequence of String values indicating the list's state at each point. For
example, if the operations below at left are performed, then the HistoryList object should keep track of
the sequence of Strings shown below at right:

Operations History Entries
HistoryList list = new HistoryList();
list.add(18);
list.add(27);
list.add(0, 45);
list.remove(1);
list.set(0, -15);
list.add(9);

"[]"
"[18]"
"[18, 27]"
"[45, 18, 27]"
"[45, 27]"
"[-15, 27]"
"[-15, 27, 9]"

When a HistoryList is constructed, the first String in the list above should be added to its history.
Each time any of methods add, remove, or set are called, a new entry is added to the history showing the
state of the list after the call. You must exactly reproduce the format shown above.

These Strings that are part of the history will be accessed by clients using the following new methods:

public int historySize() returns number of Strings in history
public String getHistory(int index) returns given history String (0=first, 1=second, etc.)

In the example above, after executing the sample code, the history size will be 6 and the six different history
Strings can be accessed by calls on getHistory passing indexes between 0 and 5. For example:

for (int i = 0; i < list.historySize(); i++) {
System.out.println(list.getHistory(i));

}

You must also make HistoryList objects comparable to each other using the Comparable interface.
A HistoryList with more strings in its history is considered to be "greater than" one with fewer history
entries. If two HistoryLists have the same number of history entries, the one that contains more
elements (the one with the greater size) is considered to be greater. If the two lists have the same number of
history entries and the same size, they are considered to be "equal" for this problem.

3. Linked List Programming. Write a method removeDuplicates that could be added to the
LinkedIntList class from lecture and section. The method should remove any duplicates from the linked
list of integers. The resulting list should have the values in the same relative order as their first occurrence
in the original list. In other words, a value i should appear before a value j in the final list if and only if the
first occurrence of i appeared before the first occurrence of j in the original list. For example, if a variable
called list stores the following list:

[14, 8, 14, 12, 1, 14, 11, 8, 8, 10, 4, 9, 1, 2, 5, 2, 4, 12, 12]

After the call of list.removeDuplicates(); , the list should store these values:

[14, 8, 12, 1, 11, 10, 4, 9, 2, 5]

Recall the LinkedIntList and node classes:

public class LinkedIntList {
 private ListNode front;

 methods
}

public class ListNode {
 public int data; // data stored in this node
 public ListNode next; // link to next node in the list
 ...
}

You may not call any methods of your linked list class to solve this problem, you may not construct any
new nodes, and you may not use any auxiliary data structure to solve this problem (such as an array,
ArrayList, Queue, String, etc). You also may not change any data fields of the nodes. You must
solve this problem by rearranging the links of the list.

4. Searching and Sorting.

(a) Suppose we are performing a binary search on a sorted array called numbers initialized as follows:

// index 0 1 2 3 4 5 6 7 8 9 10 11 12
int[] numbers = {-5, -1, 3, 5, 7, 10, 18, 29, 37, 42, 58, 63, 94};

// search for the value 33
int index = binarySearch(numbers, 33);

Write the indexes of the elements that would be examined by the binary search (the mid values in our
algorithm's code) and write the value that would be returned from the search. Assume that we are using the
binary search algorithm shown in lecture and section.

• Indexes examined: ___

• Value Returned: __________________________

(b) Write the state of the elements of the array below after each of the first 3 passes of the outermost loop of
the selection sort algorithm.

int[] numbers = {15, 56, 24, 5, 39, -4, 27, 10};
selectionSort(numbers);

(c) Trace the complete execution of the merge sort algorithm when called on the array below, similarly to
the example trace of merge sort shown in the lecture slides. Show the sub-arrays that are created by the
algorithm and show the merging of sub-arrays into larger sorted arrays.

int[] numbers = {15, 56, 24, 5, 39, -4, 27, 10};
mergeSort(numbers);

5. Binary Search Trees.

(a) Write the binary search tree that would result if these elements were added to an empty tree in this order:

• Leia, Boba, Darth, R2D2, Han, Luke, Chewy, Jabba

(b) Write the elements of your tree above in the order they would be visited by each kind of traversal:

• Pre-order: __

• In-order: __

• Post-order: __

6. Binary Tree Programming. Write a method equals that could be added to the IntTree class from
lecture and section. The method accepts another binary tree of integers as a parameter and compares the
two trees to see if they are equal to each other. For example, if variables of type IntTree called t1 and t2
have been initialized, then t1.equals(t2) will return true if the trees are equal and false otherwise.

Two trees are considered equal if they have exactly the same structure and store the same values. Each node
in one tree must have a corresponding node in the other tree in the same location relative to the root and
storing the same value. Two empty trees are considered equal to each other.

You may define private helper methods to solve this problem, but otherwise you may not call any other
methods of the class nor create any data structures such as arrays, lists, etc. Your method should not change
the structure or contents of either of the two trees being compared.

Recall the IntTree and IntTreeNode classes as shown in lecture and section:

public class IntTreeNode {
 public int data; // data stored in this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 public IntTreeNode(int data) { ... }
 public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {...}
}

public class IntTree {
 private IntTreeNode overallRoot;

 methods
}

7. Binary Tree Programming. Write a method combineWith that could be added to the IntTree class
from lecture and section. The method accepts another binary tree of integers as a parameter and combines
the two trees into a new third tree which is returned. The new tree's structure should be a union of the
structures of the two original trees; it should have a node in any location where there was a node in either of
the original trees (or both). The nodes of the new tree should store an integer indicating which of the
original trees had a node at that position (1 if just the first tree had the node, 2 if just the second tree had the
node, 3 if both trees had the node).

For example, suppose IntTree variables t1 and t2 have been initialized and store the following trees:

t1 t2
 +---+
 | 9 |
 +---+
 / \
 / \
 +---+ +---+
 | 6 | | 14|
 +---+ +---+
 / \ \
 / \ \
+---+ +---+ +---+
| 9 | | 2 | | 11|
+---+ +---+ +---+
 /
 /
 +---+
 | 4 |
 +---+

 +---+
 | 0 |
 +---+
 / \
 / \
 +---+ +---+
 | -3| | 8 |
 +---+ +---+
 / / \
 / / \
+---+ +---+ +---+
| 8 | | 5 | | 6 |
+---+ +---+ +---+
 \
 \
 +---+
 | 1 |
 +---+

Then the following call:

IntTree t3 = t1.combineWith(t2);

will return a reference to the following tree:

t3
 +---+
 | 3 |
 +---+
 / \
 / \
 +---+ +---+
 | 3 | | 3 |
 +---+ +---+
 / \ / \
 / \ / \
+---+ +---+ +---+ +---+
| 3 | | 1 | | 2 | | 3 |
+---+ +---+ +---+ +---+
 / \
 / \
 +---+ +---+
 | 1 | | 2 |
 +---+ +---+

You may define private helper methods to solve this problem, but otherwise you may not call any other
methods of the class nor create any data structures such as arrays, lists, etc. Your method should not change
the structure or contents of either of the two original trees being combined.

	CSE 143 Sample Final Exam #4

