
CSE 143 Sample Final Exam #1

1. Inheritance and Polymorphism.
Consider the following classes
(System.out.println has been
abbreviated as S.o.pln):

public class Cup extends Box {
 public void method1() {
 S.o.pln("Cup 1");
 }

 public void method2() {
 S.o.pln("Cup 2");
 super.method2();
 }
}

public class Pill {
 public void method2() {
 S.o.pln("Pill 2");
 }
}

public class Jar extends Box {
 public void method1() {
 S.o.pln("Jar 1");
 }

 public void method2() {
 S.o.pln("Jar 2");
 }
}

public class Box extends Pill {
 public void method2() {
 S.o.pln("Box 2");
 }

 public void method3() {
 method2();
 S.o.pln("Box 3");
 }
}

The following variables are defined:

Box var1 = new Box();
Pill var2 = new Jar();
Box var3 = new Cup();
Box var4 = new Jar();
Object var5 = new Box();
Pill var6 = new Pill();

In the table below, indicate in the right-hand column the output
produced by the statement in the left-hand column. If the
statement produces more than one line of output, indicate the
line breaks with slashes as in "a / b / c" to indicate three lines of
output with "a" followed by "b" followed by "c". If the
statement causes an error, fill in the right-hand column with the
phrase "error" to indicate this.

Statement

var1.method2();

var2.method2();

var3.method2();

var4.method2();

var5.method2();

var6.method2();

var1.method3();

var2.method3();

var3.method3();

var4.method3();

((Cup) var1).method1();

((Jar) var2).method1();

((Cup) var3).method1();

((Cup) var4).method1();

((Jar) var4).method2();

((Box) var5).method2();

((Pill) var5).method3();

((Jar) var2).method3();

((Cup) var3).method3();

((Cup) var5).method3();

Output

2. Inheritance and Comparable Programming. You have been asked to extend a pre-existing class Point
that represents 2-D (x, y) coordinates. The Point class includes the following constructors and methods:

Constructor/Method Description
public Point() constructs the point (0, 0)
public Point(int x, int y) constructs a point with the given x/y coordinates
public void setLocation(int x, int y) sets the coordinates to the given values
public int getX() returns the x-coordinate
public int getY() returns the y-coordinate
public String toString() returns a String in standard "(x, y)" notation
public double distanceFromOrigin() returns the distance from the origin (0, 0),

computed as the square root of (x2 + y2)

You are to define a new class called Point3D that extends this class through inheritance. It should
behave like a Point except that it should be a 3-dimensional point that keeps track of a z-coordinate. You
should provide the same methods as the superclass, as well as the following new behavior.

Constructor/Method Description
public Point3D() constructs the point (0, 0, 0)
public Point3D(int x, int y, int z) constructs a point with given x/y/z

coordinates
public void setLocation(int x, int y, int z) sets coordinates to the given values
public int getZ() returns the z-coordinate

Some of the existing behaviors from Point should behave differently on Point3D objects:

• When the original 2-parameter version of the setLocation is called, the 3-D point's x/y
coordinates should be set as specified, and the z-coordinate should be set to 0.

• When a 3-D point is printed with toString, it should be returned in an "(x, y, z)" format that shows
all three coordinates.

• A 3-D point's distance from the origin is computed using all three coordinates; it is equal to the
square root of (x2 + y2 + z2).

You must also make Point3D objects comparable to each other using the Comparable interface. 3-D
points are compared by x-coordinate, then by y-coordinate, then by z-coordinate. In other words, a
Point3D object with a smaller x-coordinate is considered to be "less than" one with a larger x-coordinate.
If two Point3D objects have the same x-coordinate, the one with the lower y-coordinate is considered
"less." If they have the same x and y-coordinates, the one with the lower z-coordinate is considered "less."
If the two points have the same x, y, and z-coordinates, they are considered to be "equal."

3. Linked List Programming. Write a method reorder that could be added to the LinkedIntList class
from lecture and section. The method rearranges a list of integers into sorted order assuming that the list is
already sorted by absolute value. Suppose a LinkedIntList variable list stores the following values:

[0, -3, 3, -5, 7, -9, -10, 10, -11, -11, -11, 12, -15]

Notice that the values are in sorted order if you ignore their signs. The call list.reorder(); should
reorder the values into sorted, non-decreasing order (including sign).

[-15, -11, -11, -11, -10, -9, -5, -3, 0, 3, 7, 10, 12]

Because the list is sorted by absolute value, you can solve this problem very efficiently. Your solution is
required to run in O(N) time where N is the length of the list. Recall the LinkedIntList and node classes:

public class LinkedIntList {
 private ListNode front;

 methods
}

public class ListNode {
 public int data; // data stored in this node
 public ListNode next; // link to next node in the list
 ...
}

You may not call any methods of your linked list class to solve this problem, you may not construct any
new nodes, and you may not use any auxiliary data structure to solve this problem (such as an array,
ArrayList, Queue, String, etc). You also may not change any data fields of the nodes. You must
solve this problem by rearranging the links of the list.

4. Searching and Sorting.

(a) Suppose we are performing a binary search on a sorted array called numbers initialized as follows:

// index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
int[] numbers = {-9, -6, -2, -1, 0, 1, 3, 4, 5, 7, 9, 10, 12, 19, 23, 26};

// search for the value 1
int index = binarySearch(numbers, 1);

Write the indexes of the elements that would be examined by the binary search (the mid values in our
algorithm's code) and write the value that would be returned from the search. Assume that we are using the
binary search algorithm shown in lecture and section.

• Indexes examined: ___

• Value Returned: __________________________

(b) Write the state of the elements of the array below after each of the first 3 passes of the outermost loop of
the selection sort algorithm.

int[] numbers = {37, 29, 19, 48, 23, 55, 74, 12};
selectionSort(numbers);

(c) Trace the complete execution of the merge sort algorithm when called on the array below, similarly to
the example trace of merge sort shown in the lecture slides. Show the sub-arrays that are created by the
algorithm and show the merging of sub-arrays into larger sorted arrays.

int[] numbers = {37, 29, 19, 48, 23, 55, 74, 12};
mergeSort(numbers);

5. Binary Search Trees.

(a) Write the binary search tree that would result if these elements were added to an empty tree in this order:

• Kirk, Spock, Scotty, McCoy, Chekov, Uhuru, Sulu, Khaaaan!

(b) Write the elements of your tree above in the order they would be visited by each kind of traversal:

• Pre-order: __

• In-order: __

• Post-order: __

6. Binary Tree Programming. Write a method inOrderList that could be added to the IntTree class
from lecture and section. The method returns a list containing the sequence of values obtained from an in-
order traversal of your binary tree of integers. For example, if a variable t refers to the following tree:

t
 +---+
 | 7 |
 +---+
 / \
 / \
 +---+ +---+
 | 4 | | 2 |
 +---+ +---+
 / / \
 / / \
+---+ +---+ +---+
| 9 | | 5 | | 0 |
+---+ +---+ +---+

Then the call t.inOrderList() should return the following list:

[9, 4, 7, 5, 2, 0]

If the tree is empty, your method should return an empty list.

You may define private helper methods to solve this problem, but otherwise you may not call any other
methods of the IntTree class. Your method should not change the structure or contents of the tree.

Recall the IntTree and IntTreeNode classes as shown in lecture and section:

public class IntTreeNode {
 public int data; // data stored in this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 public IntTreeNode(int data) { ... }
 public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {...}
}

public class IntTree {
 private IntTreeNode overallRoot;

 methods
}

7. Binary Tree Programming. Write a method construct that could be added to the IntTree class from
lecture and section. The method accepts a sorted array of integers as a parameter and constructs a balanced
binary search tree containing those integers. The tree should be constructed so that for every node, either
the left/right subtrees have the same number of nodes, or the left subtree has one more node than the right.

For example, if you have an IntTree variable called t and an array called a storing values [1, 2, 3,
4, 5, 6, 7], and call of t.construct(a); is made, t should store the tree below at left. If the array
stores [3, 8, 19, 27, 34, 42, 49, 53, 67, 74], the tree below at right is constructed.

First Example
[1, 2, 3, 4, 5, 6, 7]

Second Example
[3, 8, 19, 27, 34, 42, 49, 53, 67, 74]

 +---+
 | 4 |
 +---+
 / \
 / \
 +---+ +---+
 | 2 | | 6 |
 +---+ +---+
 / \ / \
 / \ / \
+---+ +---+ +---+ +---+
| 1 | | 3 | | 5 | | 7 |
+---+ +---+ +---+ +---+

 +----+
 | 42 |
 +----+
 / \
 / \
 +----+ +----+
 | 19 | | 67 |
 +----+ +----+
 / \ / \
 / \ / \
 +----+ +----+ +----+ +----+
 | 8 | | 34 | | 53 | | 74 |
 +----+ +----+ +----+ +----+
 / / /
 / / /
+----+ +----+ +----+
| 3 | | 27 | | 49 |
+----+ +----+ +----+

Notice that when it is not possible to have left and right subtrees of equal size, the extra value always ends
up in the left subtree, as in the overall tree which has 5 nodes in the left subtree and 4 in the right.

The new tree should replace any old tree. For full credit, your solution must run in O(N) time, where N is
the number of elements in the array. You may assume that the values in the array appear in sorted order.

You may define private helper methods to solve this problem, but otherwise you may not call any other
methods of the class nor create any data structures such as arrays, lists, etc. You also may not alter the array
that you are passed.

	CSE 143 Sample Final Exam #1

