Building Java Programs

Binary Search Trees

reading: 17.3 -17.4

Vorss vesi
PHI rTwi

N
W

Heap: a tree in which each child node has a value smaller than its parent's value.
One possible implementation for priority queues (seen later).

Binary search trees

* binary search tree ("BST"): a binary tree where each
non-empty node R has the following properties:

elements of R's left subtree contain data "less than" R's data,
elements of R's right subtree contain data "greater than" R's,
R's left and right subtrees are also binary search trees.

: _ overall root
e BSTs store their elements in

sorted order, which is helpful
for searching/sorting tasks.

29 @
@ ® @ @

e —

BST examples

e Which of the trees shown are legal binary search trees?

Searching a BST

Describe an algorithm for searching a binary search tree.
Try searching for the value 31, then 6.

What is the maximum overall root
number of nodes you !

would need to examine
to perform any search?

Exercise

e Convert the IntTree class into a SearchTree class.
The elements of the tree will form a legal binary search tree.

* Write a contains method that takes advantage of the BST
structure.

e tree.contains (29) — true

e tree.contains (55) — true overall root
e tree.contains (63) — false

e tree.contains (35) — false

29 87
@ ® @ @

Exercise solution

o Borurns whichbeor EhiesnRoT centains thevs v iiabege g
public boolean contains (int wvalue) {
return contains (overallRoot, wvalue);

}

private boolean contains (IntTreeNode node, 1int wvalue) {

if (node == null) {

TS u v E A SRRy MY e // base case: not found here
} else 1if (node.data == value) {

EOWER Eros Wobhaseease s Eonnd here

} else i1f (node.data > value) {

return contains (node.left, wvalue);
} else { // root.data < value

return contains (node.right, wvalue);

}

Adding to a BST

e Suppose we want to add new values to the BST below.
Where should the value 14 be added?
overall root

Where should 3 be added? 77
If the tree is empty, where
should a new value be added?

e What is the general algorithm? 5 : l

2 © @
(4 2
2

Adding exercise

* Draw what a binary search tree would look like if the
following values were added to an initially empty tree in
this order:

50
20
75
98
30
31
150
39
23
11
77

Exercise

e Add a method add to the searchTree class that adds a
given integer value to the BST.

Add the new value in the proper place to maintain BST

ordering.
overall root

e tree.add((49),

10

An incorrect solution

// Adds the given value to this BST in sorted order.
public void add(int value) {
add (overallRoot, wvalue);

}

private void add(IntTreeNode node, int value) {

if (node == null) {

node = new IntTreeNode (value) ; overallRoot
hivelsevsi v inode vda ey s imra ey

add (node.left, wvalue); @
} else 1f (node.data < wvalue) {

add (node.right, wvalue) ;
} ® @
Mevelsesnogenda ba e ma e e e s
Leaisetavandupiicate tdon b add) @ @ @ @

}
* Why doesn't this solution work?

11

e ——

The X = change(x)
pattern

read 17.3

A tangent: Change a point

* What is the state of the object referred to by p after this

code?

public static void main(String[] args) {
Poinbivpysvnewaw o gy
change (p) ; prxi el D
System.out.println (p) ;

}

BV S N e AR e D AP n e e o sl AV e D e
thePoint.x = 3;
thePoint.y = 4;

}

// answer: (3, 4)

13

Change point, version 2

* What is the state of the object referred to by p after this
code?

public static void main(String[] args) {
Poinbivpysvnewaw o gy
change (p) ; e el)
System.out.println (p) ;

}

o

BV S N e AR e D AP n e e o sl AV e D e
thePoint = new Point (3, 4);

.

}

B

W
<

N

// answer: (1, 2)

Changing references

e If a method dereferences a variable (with .) and modifies
the object it refers to, that change will be seen by the
caller.

public static void change (Point thePoint) {
thePoint.x = 3; // affects p
thePoint.setY (4) ; riivattects o

o If a method reassigns a variable to refer to a new object,
that change will not affect the variable passed in by the
caller.

pubivevstabrcvwvordyvchangetPernty EheRornty
EhePoint ‘= inew Point 304y // p unchanged
thePoint = null; o i Ve Yo

What if we want to make the variable passed in become null?
15

Change point, version 3

* What is the state of the object referred to by p after this
code?

public static void main(String[] args) {
Poinbivpysvnewaw o gy
change (p) ; e i
System.out.println (p) ;

} //

public static Point change (Point thePoint) {
thePoint = new Point (3, 4);

return thePoint; \\

}

ik e v

// answer: (1, 2)

P —

Change point, version 4

* What is the state of the object referred to by p after this

code?

public static void main(String[] args) {
Poinbivpysvnewaw o gy
p = change (p) ; p ——| x| 1 |y| 2
System.out.println (p) ;

} //
P e aEn e Bod e el i e [Po s S n i Rer e
thePoint = new Point (3, 4);
return thePoint; \\

}

x| 3 |y| 4

// answer: (3, 4)

X = change(Xx);

e If you want to write a method that can change the object
that a variable refers to, you must do three things:

1. pass in the original state of the object to the method
2. return the new (possibly changed) object from the method
3. re-assign the caller's variable to store the returned result

p = change(p) ; Jod e

Dbl e o o e Boab e hangea b oy ety
thePoint = new Point (99, -1);
return thePoint;

* We call this general algorithmic pattern x = change(x);
also seen with strings: s = s.toUpperCase();

18

The problem

* Much like with linked lists, if we just modify what a local
variable refers to, it won't change the collection.

node

private void add(IntTreeNode node, int value) {
g R A Sk = e i N A I e

node = new IntTreeNode (value) ; overallRoot

In the linked list case, how did we

actually modify the list? @ @
« by changing the front

- by changing a node's next field @ @ @ @

}

19

Applying x = change(x)

*» Methods that modify a tree should have the following
pattern:
input (parameter): old state of the node

output (return): new state of the node
node parameter | your return node
before 1 method - after

e In order to actually change the tree, you must reassign:

node = change (node, parameters) ;

node.left = change (node.left, parameters);

node.right = change (node.right, parameters) ;
(

overallRoot = change (overallRoot, parameters) ;

S

A correct solution

// Adds the given value to this BST in sorted order.
public void add(int value) {

overallRoot = add(overallRoot, wvalue);
}

private IntTreeNode add (IntTreeNode node, 1nt wvalue) {
1f (node == null) {
node = new IntTreeNode (value) ;
Livellseniy finode vdabay > vwrabimey v
node.left = add(node.left,
} else 1f (node.data < wvalue) {
node.right = add(node.right, value);
P e i e e ot

overallRoot

value) ;

return node;

}

O® @

e What happens when node is a leaf?

21

