
Adam Blank Autumn 2015Lecture 19

CSE143X
Accelerated Computer

Programming I/II

CSE 143X: Accelerated Computer Programming I/II

Stacks & Queues

What Are We Doing Again? 1

What Are We Doing. . . ?
We’re learning some new data structures (we’re going to be the client of
them!).

Today’s Main Goals:
To understand what stacks and queues are
To understand the difference betweeen an interface and an
implementation

Queues 2

Queue
Real-world queues: a service line, printer jobs
A queue is a collection which orders the elements first-in-first-out
(“FIFO”). Note that, unlike lists, queues do not have indices.

Elements are stored internally in order of insertion.
Clients can ask for the first element (remove/peek).
Clients can ask for the size.
Clients can add to the back of the queue (add).
Clients may only see the first element of the queue.

Client: ←Ð 7 ? ? ? ? ←Ð
Impl: ←Ð 7 -2 4 2 3 ←Ð

remove()ÔÔÔÔ⇒↝

7

Client: ←Ð -2 ? ? ? ←Ð
Impl: ←Ð -2 4 2 3 ←Ð

Client: ←Ð -2 ? ? ? ←Ð
Impl: ←Ð -2 4 2 3 ←Ð

add(9)ÔÔÔ⇒ Client: ←Ð -2 ? ? ? ? ←Ð
Impl: ←Ð -2 4 2 3 9 ←Ð

Applications Of Queues 3

Queue of print jobs to send to the printer

Queue of programs / processes to be run

Queue of keys pressed and not yet handled

Queue of network data packets to send

Queue of button/keyboard/etc. events in Java

Modeling any sort of line

Queuing Theory (subfield of CS about complex behavior of queues)

Queue Reference 4

Queue is an interface. So, you create a new Queue with:
Queue<Integer> queue = new LinkedList<Integer>();

add(val) Adds val to the back of the queue
remove() Removes the first value from the queue; throws

a NoSuchElementException if the queue is
empty

peek() Returns the first value in the queue without re-
moving it; returns null if the queue is empty

size() Returns the number of elements in the queue
isEmpty() Returns true if the queue has no elements



Okay; Wait; Why? 5

A queue seems like what you get if you take a list and remove methods.

Well. . . yes. . .
This prevents the client from doing something they shouldn’t.

This ensures that all valid operations are fast.

Having fewer operations makes queues easy to reason about.

Stacks 6

Stack
Real-world stacks: stock piles of index cards, trays in a cafeteria
A stack is a collection which orders the elements last-in-first-out
(“LIFO”). Note that, unlike lists, stacks do not have indices.

Elements are stored internally in order of insertion.
Clients can ask for the top element (pop/peek).
Clients can ask for the size.
Clients can add to the top of the stack (push).
Clients may only see the top element of the stack

Client:↓↑
7
?
?
?
?

Impl:↓↑
7
-2
4
2
3

pop()ÔÔ⇒↝

7

Client:↓↑
-2
?
?
?

Impl:↓↑
-2
4
2
3

push(9)ÔÔÔ⇒
Client:↓↑

9
?
?
?
?

Impl:↓↑
9
-2
4
2
3

Applications of Stacks 7

Your programs use stacks to run:
(pop = return, method call = push)!

1 public static fun1() {
2 fun2(5);
3 }
4 public static fun2(int i) {
5 return 2*i; //At this point!
6 }
7 public static void main(String[] args) {
8 System.out.println(fun1());
9 }

Execution:↓↑
fun2
fun1
main

Compilers parse expressions using stacks

Stacks help convert between infix (3 + 2) and postfix (3 2 +).
(This is important, because postfix notation uses fewer characters.)

Many programs use “undo stacks” to keep track of user operations.

Stack Reference 8

Stack is NOT an interface. So, you create a new Stack with:
Stack<Integer> stack = new Stack<Integer>();

Stack<E>() Constructs a new stack with elements of type E
push(val) Places val on top of the stack
pop() Removes top value from the stack and returns it;

throws EmptyStackException if stack is empty
peek() Returns top value from the stack without remov-

ing it; throws EmptyStackException if stack is
empty

size() Returns the number of elements in the stack
isEmpty() Returns true if the stack has no elements

Back to ReverseFile 9

Consider the code we ended with for ReverseFile from the first lecture:
Print out words in reverse, then the words in all capital letters

1 ArrayList<String> words = new ArrayList<String>();
2
3 Scanner input = new Scanner(new File("words.txt"));
4 while (input.hasNext()) {
5 String word = input.next();
6 words.add(word);
7 }
8
9 for (int i = words.size() − 1; i >= 0; i−−) {

10 System.out.println(words.get(i));
11 }
12 for (int i = words.size() − 1; i >= 0; i−−) {
13 System.out.println(words.get(i).toUpperCase());
14 }

We used an ArrayList, but then we printed in reverse order. A Stack
would work better!

ReverseFile with Stacks 10

This is the equivalent code using Stacks instead:

Doing it with Stacks

1 Stack<String> words = new Stack<String>();
2
3 Scanner input = new Scanner(new File("words.txt"));
4
5 while (input.hasNext()) {
6 String word = input.next();
7 words.push(word);
8 }
9

10 Stack<String> copy = new Stack<String>();
11 while (!words.isEmpty()) {
12 copy.push(words.pop());
13 System.out.println(words.peek());
14 }
15
16 while (!copy.isEmpty()) {
17 System.out.println(copy.pop().toUpperCase());
18 }



Illegal Stack Operations 11

You may NOT use get on a stack!
1 Stack<Integer> s = new Stack<Integer>();
2 for (int i = 0; i < s.size(); i++) {
3 System.out.println(s.get(i));
4 }

get, set, etc. are not valid stack operations.

Instead, use a while loop
1 Stack<Integer> s = new Stack<Integer>();
2 while (!s.isEmpty()) {
3 System.out.println(s.pop());
4 }

Note that as we discovered, the while loop destroys the stack.


