Adam Blank Lecture 19 Autumn 2015

1235

Accelerated Computer
Programming /11

What Are We Doing Again? 1

What Are We Doing...?

We're learning some new data structures (we're going to be the client of
them!).

Today’s Main Goals:
m To understand what stacks and queues are

m To understand the difference betweeen an interface and an
implementation

Applications Of Queues 3

m Queue of print jobs to send to the printer

m Queue of programs / processes to be run

m Queue of keys pressed and not yet handled

m Queue of network data packets to send

m Queue of button/keyboard/etc. events in Java
m Modeling any sort of line

m Queuing Theory (subfield of CS about complex behavior of queues)

CSE 143X: Accelerated Computer Programming 1/11

Stacks & Queues

PRSI do Comprder Sceists
Gme we With blels dwn

&:C:,A:\N ¥or (Gm mbn WAS?
Lied, Trea, Tyte, cl«syJ 1
E;@&Q

To "Nebe & \-\s-[- o I
Tkes oc l’“ﬁ-‘ Cs Cafi

WP Pe byos ([,\g(:)_

W,

Queue

Real-world queues: a service line, printer jobs

A queue is a collection which orders the elements first-in-first-out
(“FIFO"). Note that, unlike lists, queues do not have indices.

Elements are stored internally in order of insertion.
Clients can ask for the first element (remove/peek).

]

]

m Clients can ask for the size.

m Clients can add to the back of the queue (add).
]

Clients may only see the first element of the queue.

Client: <[7[?[?]7]7]« removeo Client: «[-2][7[7]7 |«
mpl [T[2[6[2[31~ ¢ mpt <[2[4[23])-

Client: «[-2[7[7[7]« awua Client: «[-2]7]?7[7]7 |«
i [24123] mpts (2 4] 23[9]

Queue Reference 4

Queue is an interface. So, you create a new Queue with:

Queue<Integer> queue = new LinkedList<Integer>();

add (val) Adds val to the back of the queue

remove () Removes the first value from the queue; throws
a NoSuchElementException if the queue is
empty

peek) Returns the first value in the queue without re-
moving it; returns null if the queue is empty

size() Returns the number of elements in the queue

isEmpty () | Returns true if the queue has no elements

Okay; Wait; Why? 5

A queue seems like what you get if you take a list and remove methods.

Well. . .yes. ..
m This prevents the client from doing something they shouldn’t.

m This ensures that all valid operations are fast.

m Having fewer operations makes queues easy to reason about.

Applications of Stacks 7

m Your programs use stacks to run:

(pop = return, method call = push)!

1 public static funl() {

g } fun2(5); Execution:
4 public static fun2(int i) { i

5 return 2xi; //At this point! fun2

6 N) funl

7 public static void main(String[] args) { n

8 System.out.println(funl()); main
9 }

m Compilers parse expressions using stacks

m Stacks help convert between infix (3 4+ 2) and postfix (3 2 +).
(This is important, because postfix notation uses fewer characters.)

m Many programs use “undo stacks” to keep track of user operations.

Back to ReverseFile 9

Consider the code we ended with for ReverseFile from the first lecture:

Print out words in reverse, then the words in all capital letters
ArraylList<String> words = new ArraylList<String>();

Scanner input = new Scanner(new File("words.txt"));
while (input.hasNext()) {

String word = input.next();

words.add(word) ;
}

NG A WN -

9 for (int i = words.size() - 1; i >= 0; i—-) {

10 System.out.println(words.get(i));

1 }

12 for (int i = words.size() — 1; i >=0; i—) {

13 System.out.println(words.get(i).toUpperCase());
14 }

We used an ArrayList, but then we printed in reverse order. A Stack
would work better!

Stack
Real-world stacks: stock piles of index cards, trays in a cafeteria

A stack is a collection which orders the elements last-in-first-out
(“LIFO"). Note that, unlike lists, stacks do not have indices.

m Elements are stored internally in order of insertion.

m Clients can ask for the top element (pop/peek).

m Clients can ask for the size.

m Clients can add to the top of the stack (push).

m Clients may only see the top element of the stack

Client: Impl: . Client: Impl:
Client: Impl:
v oot
popQ) push(9)
0
¢
7

Stack Reference 8

Stack is NOT an interface. So, you create a new Stack with:
Stack<Integer> stack = new Stack<Integer>();

Stack<E>() | Constructs a new stack with elements of type E

push(val) Places val on top of the stack

popQ) Removes top value from the stack and returns it;
throws EmptyStackException if stack is empty

peek() Returns top value from the stack without remov-
ing it; throws EmptyStackException if stack is
empty

size() Returns the number of elements in the stack

isEmpty () Returns true if the stack has no elements

ReverseFile with Stacks 10

This is the equivalent code using Stacks instead:
Doing it with Stacks

Stack<String> words = new Stack<String>();

Scanner input = new Scanner(new File("words.txt"));
while (input.hasNext()) {

String word = input.next();
words.push(word) ;

WO~NO O A WN =

}

10 Stack<String> copy = new Stack<String>();
11 while (!words.isEmpty()) {

12 copy. push(words.pop());

13 System.out.println(words.peek());

14 }

16 while (!copy.isEmpty()) {
17 System.out.println(copy.pop().toUpperCase());
18 }

lllegal Stack Operati

B WN

A wWN

You may NOT use get on a stack!
Stack<Integer> s = new Stack<Integer>();
(int i = 0; i < s.size(); i++) {

System.out.println(s.@&8(i));
}

get, set, etc. are not valid stack operations.

Instead, use a while loop

Stack<Integer> s = new Stack<Integer>();

while (!s.isEmpty()) {
System.out.println(s.pop());

}

Note that as we discovered, the while loop destroys the stack.

11

