Adam Blank Lecture 11a Autumn 2015 CSE 143X: Accelerated Computer Programming /11

14%E List Nodes J

Accelerated Computer
Programming 1/11 /

More Than Arrays 1 Today’s Goals p)

m Get familiar with the idea of “references” (things that point to
objects)

m So far, the only “real data structure” we've seen is arrays

m Define and explore ListNode

m What are some limitations of arrays?

= You need to know the size before declaration
= Adding/removing can be annoying m Learn about null
m They have no methods

m Practice modifying linked lists
m This is where the idea of a list comes in

m Get familiar with matching up code and pictures of linked lists

1 int[] al = new int[2];
Consider the following two documents in a text editor: g ai"‘ = g?
al.y = 3;
m A normal book 4 int[] a2 = new int[2];
m A “choose your own adventure” book 2 a2.x = 106;
7 int[] a3 = a2;
8 a2 = al;
What happens to the page numbers when we. . . g az2.x = g?
. 10 al.y = 2;
m Find the last page 11 System.out.println("A: " + al.x + ", " + al.y);

"+ a2.x + ", "+ a2.y);
"+ a3.x + ", " + a3.y);

12 System.out.println("

m Add a new page in the middle of the book 13 System.out.println(*

C:
m Add a new page at the end of the book

Books as Data Structures What does this code print?

m Arrays are stored in memory like a normal book; it's contiguous, QUTPUT
>> A: 5, 2
and random-access B s

>> C: 100, O

m For the next three lectures, we'll discuss the data structure
equivalent to a “choose your own adventure” book

Mystery Explained 5

[

int[] al = new int[2]; //o0l
al.x = 8;
al.y = 3;

ol:

01[0] o1[1]

int[] a2 = new int[2]; //02
a2.x = 100;

al a2
A v
o

o1[0] oill] 02[0] 0201]

ol:

int[] a3 = a2;

ol: 02:

01[0] o1[1] 02[0] 02[1]

Mystery Explained (cont.) 6

©

a2 = al;
al a2 a3
vy 7 A
ol: | 8 3 02: | 100 | O
01[0] o1[1] 02[0] 02[1]
a2.x = 5;
al.y = 2;
al a3
A A
ot [5 o2 [100] 0|

otf0] oi[1] 02[0] 02[1]

What's Going On?
m The keyword new creates an actual new object to point to (o1, 02).

m All the other variables just point to objects that were created with
new (al1,a2,a3).

ENRE N

ListNode Class

public class ListNode {
int data;
ListNode next;

}

A ListNode is:
The box represents data, and the arrow represents next.

Since next is of ListNode type, the arrow can either point to nothing
(null) or another ListNode.

ListNode 8

N RN N

[N T N O N

ListNode Class

public class ListNode {
int data;
ListNode next;

}

How can we use code to make this list?
list

ListNode list = new ListNode(); D

list.data = 5;
list.next = new ListNode(); L]
list.next.data = 10;
list.next.next = new ListNode();

list.next.next.data = 15;

ENRE

-

ListNode Class

public class ListNode {
int data;
ListNode next;

}

How can we use code to make this list?
list

What does this code do to our list? node

ListNode node = list.next;

node This isn't quite
list.next = list.next.next;
node What's wrong?

list.next.next = node;

Linked Lists

list.next.next.next = list.next;
list

BYDeEpnpn

The code sets the arrow coming out of ¢ to the node d.

list

The left side of the assignment is an arrow.

The right side of the assignment is a node.

Dereferencing

When we call .next, we follow an arrow in the list. What happens if we
have this list:

list

And we call the following code:

1 System.out.println(list.next.next.next);

Or this code:

1 System.out.println(list.next.next.next.data);

The first one prints null. The second throws a NullPointerException.

null means “end of the list

Constructors!

public class ListNode {
int data;
ListNode next;

1

2

3

4

5 public ListNode(int data) {
6 this(data, null);

7

8

9 public ListNode(int data, ListNode next) {

10 this.data = data;
11 this.next = next;
12 }

13 }

What list does this code make?

ListNode list = new ListNode(1, null); list
list.next = new ListNode(2, null);
list.next.next = new ListNode(3, null);

Can we do this without ever using .next?

ListNode list = new ListNode(1, new ListNode(2, new ListNode(3, null)));

CSE 143x

Linked Lists |

Get more familiar with ListNodes
Learn how to run through the values of a LinkedList

Learn how LinkedIntList is implemented

Does That Make Sense? 1

Quick Note: When | say “does that make sense?”. ..

m If it does make sense, yell “yes”

m Otherwise, say nothing.

Another ListNode Example 2

Before:
list list2
@, ®,
After:

How many ListNodes are there in the before picture?

There are FOUR. Each box is a ListNode.

How many references to ListNodes are there?

There are SIX. Every arrow is a reference to a ListNode.

Another ListNode Example (Solution) 3

Before:
list list2
t f
sl Blelde
After:

list list2

@, O]
ol

-

list.next.next = list2.next
list2.next.next = list2;
3 list2.next = null;

N

Printing a LinkedList 4

list

Printing a LinkedList Manually
System.out.println(list.data);

2 System.out.println(list.next.data);

3 System.out.println(list.next.next.data);

-

Now, note that we can use a variable to keep track of where we are:
list
1 System.out.println(list.data);
2 list = list.next; {2131
3 System.out.println(list.data); B
4 list = list.next;
5 System.out.println(list.data); {z]

6 list = list.next;

Printing a LinkedList: Better Versi

What if our list has 1000 nodes? That would be horrible to write.

list

Printing a BIG LinkedList

while (list != null) {
System.out.println(list.data);
list = list.next;

¥

AW N

But that destroys the list; so, use a temporary variable instead:

Printing a BIG LinkedList Correctly

ListNode current = list

while (current != null) {
System.out.println(current.data);
current = current.next;

}

(S ISR

LinkedIntList 6

m No generics (only stores ints)

m Fewer methods: add(value), add(index, value), get(index),
set(index, value), size(), isEmpty(), remove(index),
index0f(value), contains(value), toString()

m This is the same idea as when we implemented ArrayIntList!

