
Adam Blank Autumn 2015Lecture 12a

CSE143X
Accelerated Computer

Programming I/II

CSE 143X: Accelerated Computer Programming I/II

Linked Lists I

Outline

1 Learn how LinkedIntList is implemented

2 Learn about the different cases to deal with for LinkedLists

Outline

1 Learn how LinkedIntList is implemented

2 Learn about the different cases to deal with for LinkedLists

LinkedIntList 1

No generics (only stores ints)

Fewer methods: add(value), add(index, value), get(index),
set(index, value), size(), isEmpty(), remove(index),
indexOf(value), contains(value), toString()

This is the same idea as when we implemented ArrayIntList!

LinkedIntList Fields 2

What fields does our LinkedIntList need?
A reference to the front of the list

1 2 3 . . .

front

LinkedIntList v1
1 public class LinkedIntList {
2 private ListNode front;
3
4 public LinkedIntList() {

5 front = null;

front

6 }
7
8 ...
9 }

LinkedIntList toString() 3

Buggy toString()
public String toString() {

String result = "[";

ListNode current = this.front;
while (current != null) {

result += current.data + ", ";
current = current.next;

}

return result + "]";
}

Our toString() puts a trailing comma. Fix it by stopping one early:
Fixed toString()
public String toString() {

String result = "[";

ListNode current = this.front;
while (current != null && current.next != null) {

result += current.data + ", ";
current = current.next;

}
if (current != null) {

result += current.data;
}

return result + "]";
}

Outline

1 Learn how LinkedIntList is implemented

2 Learn about the different cases to deal with for LinkedLists

Modifying LinkedLists 4

Writing a LinkedList Method
1 Identify cases to consider. . .

Front/Empty
Middle
End

2 Draw pictures for each case
3 Write each case separately

1 2 3 . . . 9 10 11 . . . 42

front middle end

LinkedIntList add() (Empty Case) 5

Cases to consider:
Add to empty list
Add to non-empty list

Add To An Empty List
What does an empty list look like?

front

1 public void add(int value) {
2 /* If the list is empty... */
3 if (this.front == null) {
4 this.front = new ListNode(value);

5 value

front

6 }
7 /* Other Cases ... */
8 }

LinkedIntList add() (Non-empty Case) 6

Add To A Non-Empty List
Consider a non-empty list:

1 2 3 . . . 100

front

1 /* Idea: We want to change the red arrow.
2 Loop until we’re at the last node. */
3 ListNode current = this.front;

4 1 2 3 . . . 100

front current

5 while (current != null) {
6 current = current.next;
7 }

8 1 2 3 . . . 100

front current

9 current = new ListNode(value);

10 1 2 3 . . . 100 value

front current

LinkedIntList add() (Non-empty Case) 7

Add To A Non-Empty List (Fixed)
Consider a non-empty list:

1 2 3 . . . 100

front

1 /* Idea: We want to change the red arrow.
2 Loop until we’re at the node before the last node */
3 ListNode current = this.front;

4 1 2 3 . . . 100

front current

5 while (current.next != null) {
6 current = current.next;
7 }

8 1 2 3 . . . 100

front current

9 current.next = new ListNode(value);

10 1 2 3 . . . 100 value

front current

Working with LinkedLists 8

There are only two ways to modify a LinkedList:

Change front

1 2 3

front

. . .changing front. . .
1 2 3

front

([1,2,3]; . . .changing front. . . [2,3])

Change current.next for some ListNode, current

1 2 3

front

. . .changing .next. . .
1 2 3

front

([1,2,3]; . . .changing .next. . . [1,3])

Settting “current” does NOTHING!

LinkedIntList get() 9

1 // pre: 0 <= index < size
2 // post: Returns the value in the list at index
3 public int get(int index) {
4 ListNode current = front;

5 0 1 . . . i . . . n

front current

6 for (int i = 0; i < index; i++) {
7 current = current.next;
8 }

9 0 1 . . . i . . . n

front current

10 return current.data;
11 }

Some LinkedList Tips! 10

Be able to deal with before-and-after ListNode pictures

Know how to loop through a LinkedList
Use a while loop.
Don’t forget to create a ListNode current variable so we don’t
destroy the original list.
Don’t forget to update the current variable.

They both have the same functionality (add,remove, etc.)
But they’re implemented differently (array vs. ListNodes)

With LinkedLists, you often have to stop one node before the
one you want.

DO NOT start coding LinkedList problems without drawing
pictures first.

Adam Blank Autumn 2015Lecture 12b

CSE143X
Accelerated Computer

Programming I/II

CSE 143X: Accelerated Computer Programming I/II

Linked Lists II

What Are We Doing Again? 1

What Are We Doing. . . ?
We’re building an alternative data structure to an ArrayList with
different efficiencies.

Today’s Main Goals:
Get more familiarity with LinkedLists
Write more LinkedList methods
Learn how to “protect” against NullPointerExceptions

Outline

1 Get more familiarity with changing LinkedLists

2 Write more methods in the LinkedList class

3 Protecting Against NullPointerExceptions

A New LinkedList Constructor 2

New Constructor
Create a constructor

public LinkedIntList(int n)
which creates the following LinkedIntList, when given n:

1 2 3 . . . n

What kind of loop should we use?
A for loop, because we have numbers we want to put in the list.

What cases should we worry about?
We’re creating the list; so, there aren’t really “cases”.

A New LinkedList Constructor 3

First Attempt
1 public LinkedList(int n) {
2 /* Current State */

3

front

4 ListNode current = this.front;

5

front current

6 for (int i = 1; i <= n; i++) {
7 current = new ListNode(i);

8 1

front current

9 current = current.next;

10 1

front current

11 }
12 }

Remember, to edit a LinkedList, we MUST edit one of the following:
front, or
node.next (for some ListNode node)

In our code above, we edit current, which is neither.

A New LinkedList Constructor 4

Second Attempt
1 public LinkedList(int n) {
2 /* Current State */

3 if (n > 0) {

front

4 //n is at least 1...
5 this.front = new ListNode(1);

6 1

front

7 ListNode current = this.front;

8 1

front current

9 for (int i = 1; i <= n; i++) {
10 current.next = new ListNode(i);

11 1 2

front current

12 current = current.next;

13 1 2

front current

14 }
15 }
16 }

A New LinkedList Constructor: Another Solution 5

This other solution works by going backwards. Before, we were editing
the next fields. Here, we edit the front field instead:
Different Solution!

1 public LinkedList(int n) {
2 /* Current State */

3 for (int i = n; i > 0; i−−) {

front

4 ListNode next = this.front;

5

front next

6 this.front = new ListNode(i, next);

7 n

front next

8 } /* Second time through the loop (for demo)... */
9 //ListNode next = this.front;

10 n

front next

11 //this.front = new ListNode(i, next);

12 n-1 n

front next

13 }

Outline

1 Get more familiarity with changing LinkedLists

2 Write more methods in the LinkedList class

3 Protecting Against NullPointerExceptions

Implementing addSorted 6

addSorted
Write a method addSorted(int value) that adds value to a sorted
LinkedIntList and keeps it sorted. For example, if we call
addSorted(10) on the following LinkedIntList,

-8 4 32 35

front

We would get:

-8 4 10 32 35

front

As always, we should approach this by considering the separate cases
(and then drawing pictures):

We’re supposed to insert at the front
We’re supposed to insert in the middle
We’re supposed to insert at the back

Case: Middle 7

An Incorrect Solution
1 public void addSorted(int value) { //Say value = 10...

2 -8 4 32 35

front

3 ListNode current = this.front;

4 -8 4 32 35

front current

5 while (current.data < value) {
6 current = current.next;

7 -8 4 32 35

front current

8 }
9 ...the while loop continues...

10 -8 4 32 35

front current

11 }

Uh Oh! We went too far! We needed the next field BEFORE us.

Case: Middle 8

Fixing the Problem
1 public void addSorted(int value) { //Say value = 10...

2 -8 4 32 35

front

3 ListNode current = this.front;

4 -8 4 32 35

front current

5 while (current.next.data < value) {
6 current = current.next;

7 -8 4 32 35

front current

8 }
9 ...the while loop STOPS now...

10 ListNode next = current.next;

11 -8 4 32 35

front current next

12 current.next = new ListNode(value, next);

13 -8 4 10 32 35

front current next

14 }

Does this cover all the cases?

Case: End 9

Adding At The End?
1 public void addSorted(int value) { //Say value = 40...

2 -8 4 32 35

front

3 ListNode current = this.front;

4 -8 4 32 35

front current

5 while (current.next.data < value) {
6 current = current.next;

7 -8 4 32 35

front current

8 }
9 ...the while loop continues...

10 -8 4 32 35

front current current.next

11 ...AND IT KEEPS ON GOING...
12 current.next.data→ NullPointerException!!!
13 }

We fell off the end of the LinkedList.
Idea: Make sure current.next exists.

Case: End 10

Adding At The End?
public void addSorted(int value) {

ListNode current = this.front;
/* If we are making a check for current.next, we must

* be sure that current is not null. */
while (current.next.data < value) {

/* Since we want to keep on going here,

* the check must be made in the while loop.
current = current.next;

}
}

A Fix?
public void addSorted(int value) {

ListNode current = this.front;
/* The extra check here is useless...we’ve already checked

* current.next by the time we get to it. */
while (current.next.data < value && current.next != null) {

current = current.next;
}

}

A Real Fix!
public void addSorted(int value) {

ListNode current = this.front;
while (current.next != null && current.next.data < value) {

current = current.next;
}

}

We fell off the end of the LinkedList

Case: Beginning 11

Our current code only sets current to a new ListNode. Importantly,
this never updates front; so, we lose the new node.

Adding At The Beginning?
1 public void addSorted(int value) { //Say value = −10...
2 -8 4 32 35

front

3 if (value < front.data) { −10 < −8→ true
4 ListNode next = front;

5 -8 4 32 35

front next

6 front = new ListNode(value, next);

7 -10 -8 4 32 35

front next

8 }
9 else {

10 ...
11 }
12 }

Have we covered all of our cases now?

Outline

1 Get more familiarity with changing LinkedLists

2 Write more methods in the LinkedList class

3 Protecting Against NullPointerExceptions

Protecting Our Tests! 12

With LinkedList code, every time we make a test (if, while, etc.), we
need to make sure we’re protected. Our current code is:
Working Code?

1 public void addSorted(int value) {
2 if (value < front.data) {
3 ListNode next = front;
4 front = new ListNode(value, next);
5 }
6 else {
7 while (current.next != null && current.next.data < value) {
8 current = current.next;
9 }

10
11 ListNode next = current.next;
12 current.next = new ListNode(value, next);
13 }
14 }

We’re “protected” if we know we won’t get a NullPointerException
when trying the test. So, consider our tests:

value < front.data
current.next != null && current.next.data < value

So, Are We Protected?

Protecting Our Tests! 13

Nope! What happens if front == null? We try to get the value of
front.data, and get a NullPointerException. The fix:

Working Code!
1 public void addSorted(int value) {
2 if (front == null || value < front.data) {
3 ListNode next = front;
4 front = new ListNode(value, next);
5 }
6 else {
7 while (current.next != null && current.next.data < value) {
8 current = current.next;
9 }

10
11 ListNode next = current.next;
12 current.next = new ListNode(value, next);
13 }
14 }

Helpfully, this fix actually handles the empty list case correctly!

Some LinkedList Tips! 14

Make sure to try all the cases:
Empty List
Front of Non-empty List
Middle of Non-empty List
Back of Non-empty List

To Edit a LinkedList, the assignment must look like:
this.front = <something>;, or
node.next = <something>; (for some ListNode node in the list)

Protect All Of Your Conditionals! Make sure that nothing can
accidentally be null.

When protecting your conditionals, make sure the less complicated
check goes first.

