Adam Blank Lecture 12a Autumn 2015

1235

Accelerated Computer
Programming 1/11

CSE 143X: Accelerated Computer Programming /11

Linked Lists |

Learn how LinkedIntList is implemented

Learn about the different cases to deal with for LinkedLists

LinkedIntList 1

m No generics (only stores ints)

m Fewer methods: add(value), add(index, value), get(index),
set(index, value), size(), isEmpty(), remove(index),
index0f(value), contains(value), toString()

m This is the same idea as when we implemented ArrayIntList!

LinkedIntList Fields 2

What fields does our LinkedIntList need?
A reference to the front of the list

front

T2 - —

LinkedIntList vl
public class LinkedIntList {
private ListNode front;

public LinkedIntList() {
front
v

front = null;

© o~ v

LinkedIntList toString() 3

Buggy toString()
public String toString() {
String result = "[";

ListNode current = this.front;

while (current != null) {
result += current.data + ",
current = current.next;

return result + "]1";
}

Our toString() puts a trailing comma. Fix it by stopping one early:

Fixed toString()

public String toString() {
String result = "[";

ListNode current = this.front;

while (current != null && lcurrent.next != null) {
result += current.data + ", ";
current = current.next;

if (current !'= null) {
result += current.data;
}

return result + "]";

ifying LinkedLists 4

Writing a LinkedList Method

Identify cases to consider. . .

= Front/Empty
= Middle
= End

Draw pictures for each case
Write each case separately

front middle

end

LinkedIntList add() (Empty Case) 5

Cases to consider:
m Add to empty list
m Add to non-empty list

Add To An Empty List

What does an empty list look like?
front

1 public void add(int value) {
2 /* If the list is empty... =/
3 if (this.front == null) {
4 this.front = new ListNode(value);
front
v
5
6 }
7 /* Other Cases ... %/
8 }

LinkedIntList add() (Non-empty Case)]

Add To A Non-Empty List

Consider a non-empty list:

front

1 /* Idea: We want to change the red arrow.
2 Loop until we’re at the last node. */
3 ListNode current = this.front;
front. current
.
5 while (current != null) {
6 current = current.next;
7}

front current.

.

9 current = new ListNode(value);

front current
R
" :

LinkedIntList add() (Non-empty Case) 7

Add To A Non-Empty List (Fixed)

Consider a non-empty list:

front

/* Idea: We want to change the red arrow.
Loop until we're at the node before the last node */
ListNode current = this.front;

N =

w

front current

4
5 while (current.next != null) {
6 current = current.next;
7}

tront current

b2

.
9 current.next = new ListNode(value);

front current

A4
0 - —{}[me]

There are only two ways to modify a LinkedList:

m Change front

front front

¥
- LI—=L—{—
...changing front... [
([1,2,3]; ...changing front... [2,3])

m Change current.next for some ListNode, current

front

(1] s
-

...changing .next...
([1,2,3]; ...changing .next... [1,3])

Settting “current” does NOTHING!

LinkedIntList get() 9

1 // pre: 0 <= index < size
2 // post: Returns the value in the list at index
3 public int get(int index) {
4 ListNode current = front;
front current

6 for (int i = 0; i < index; i++) {
7 current = current.next;
8 }
front current
10 return current.data;
11 }

Some LinkedList Tips!) og

m Be able to deal with before-and-after ListNode pictures

m Know how to loop through a LinkedList

m Use a while loop.

m Don't forget to create a ListNode current variable so we don't
destroy the original list.

m Don't forget to update the current variable.

m They both have the same functionality (add,remove, etc.)
m But they're implemented differently (array vs. ListNodes)

m With LinkedLists, you often have to stop one node before the
one you want.

m DO NOT start coding LinkedList problems without drawing
pictures first.

Adam Blank Lecture 12b

1235

Accelerated Computer
Programming 1/11

Autumn 2015

Linked Lists |l

www . ihooky . com

You love computers
and play with thems

then you went college
learn many... things.

you learn th:

finally you learn the
programming
of mi.

|"language’ that every
programmer in knows:
W Blasphemy.

Work you
piece of

Viad Bazan (c) 2004

What Are We Doing Again? 1

What Are We Doing. ..?

We're building an alternative data structure to an ArrayList with
different efficiencies.

Today’s Main Goals:
m Get more familiarity with LinkedLists
m Write more LinkedList methods

m Learn how to “protect” against NullPointerExceptions

A New ked.

New Constructor
Create a constructor

public LinkedIntList(int n)
which creates the following LinkedIntList, when given n:

What kind of loop should we use?

A for loop, because we have numbers we want to put in the list.

What cases should we worry about?
We're creating the list; so, there aren't really “cases".

A New LinkedList Constructor 3

First Attempt
1 public LinkedList(int n) {
2 /* Current State */

front

w

4 ListNode current = this.front;

front current

o

6 for (int i = 1; i <= n; i++) {
7 current = new ListNode(i);

front current

v
6
9 current = current.next;

front current
+ hd
10 i,
11 }
12 }
Remember, to edit a LinkedList, we MUST edit one of the following:
m front, or
m node.next (for some ListNode node)
In our code above, we edit current, which is neither.

A New LinkedList Constructor 4

Second Attempt
1 public LinkedList(int n) {
2 /* Current State */
front
3 if (n>0) {
4 //n is at least 1...
5 this.front = new ListNode(1);
front
6
7 ListNode current = this.front;
front current
8
9 for (int i = 1; i <= n; i++) {
10 current.next = new ListNode(i);
tront current
11 i‘-ﬁ 2}—
12 current = current.next;
front current
13
14 }
15 }
16 }

A New LinkedList Constructor: Another Solution 5

This other solution works by going backwards. Before, we were editing
the next fields. Here, we edit the front field instead:
Different Solution!
1 public LinkedList(int n) {
2 /* Current State */
sront
3 for (int i =n; i > 0; i—-) {
4 ListNode next = this.front;
front next
+
5
6 this.front = new ListNode(i, next);
sront next
v
7 —
8 } /* Second time through the loop (for demo)... */
9 //ListNode next = this.front;
fromt mext
10
11 //this.front = new ListNode(i, next);
front mext
12 -
13 }

Implementing addSorted 6

addSorted

Write a method addSorted(int value) that adds value to a sorted
LinkedIntList and keeps it sorted. For example, if we call
addSorted(10) on the following LinkedIntList,

front
[-8]

We would get:

front

[-8f—{4f—={10}—{32}—{35]

As always, we should approach this by considering the separate cases
(and then drawing pictures):

m We're supposed to insert at the front
m We're supposed to insert in the middle
m We're supposed to insert at the back

Case: Middle 7

An Incorrect Solution
1 public void addSorted(int value) { //Say value = 10...

front

, LG5

3 ListNode current = this.front;
front current
. Lok
5 while (current.data < value) {
6 current = current.next;
front current
; B
8 }
9 ...the while loop continues...
front current
"
11 }

Uh Oh! We went too far! We needed the next field BEFORE us.

Case: Middle 8

Fixing the Problem
1 public void addSorted(int value) { //Say value = 10...

front

2
3 ListNode current = this.front;

front current.
. B=0]
5 while (current.next.data < value) {
6 current = current.next;

front current

h 4

7 i—*.—>-—>-—>
8 }
9 ...the while loop STOPS now...
10 ListNode next = current.next;

front curremt next

A4
u EI I E ey

12 current.next = new ListNode(value, next);

front current next
- ETSEISREIRNE
14 }

Does this cover all the cases?

Adding At The End?
1 public void addSorted(int value) { //Say value = 40...

front

[s=la o2 0]

2
3 ListNode current = this.front;
front current
4 [sF=l4]

5 while (current.next.data < value) {
6 current = current.next;

front current

hd
. EIRR I EIaNEY

8 }
9 ...the while loop continues...
front current current.mext
10 L[]
11 ...AND IT KEEPS ON GOING...
12 current.next.data - NullPointerException!!!
13 }

We fell off the end of the LinkedList.
Idea: Make sure current.next exists.

Case: End 10

Adding At The End?

public void addSorted(int value) {

ListNode current = this.front;

/* If we are making a check for current.next, we must

* be sure that current is not null. +/

while (current.next.data < value) {
/* Since we want to keep on going here,
* the check must be made in the while loop
current = current.next;

}

A Fix?
public void addSorted(int value) {
ListNode current = this.front;
/* The extra check here is useless...we’ve already checked
* current.next by the time we get to it. =/
while (current.next.data < value && current.next != null) {
current = current.next;
}

}
A Real Fix!

public void addSorted(int value) {
ListNode current = this.front;
while (current.next != null && current.next.data < value) {
current = current.next;
}

}

Case: Beginning 11 Protecting Our Tests! 12
Our current code only sets current to a new ListNode. Importantly, With LinkedList code, every time we make a test (if, while, etc.), we
this never updates front; so, we lose the new node. need to make sure we're protected. Our current code is:

Adding At The Beginning? Working Code?
1 public void addSorted(int value) { //Say value = -10... 1 public void addSorted(int value) {
R 2 if (value < front.data) {
3 ListNode next = front;

2 [s] 4 front = new ListNode(value, next);

3 if (value < front.data) { -10< -8 - true 5 }

4 ListNode next = front; 6 else {

front next 7 while (current.next != null && current.next.data < value) {
8 current = current.next;
5 B=n {
6 front = new ListNode(value, next); 10
front next 11 ListNode next = current.next;
¥ = i .

. -_)] 1%) current.next = new ListNode(value, next);

8 } 14}

9 else { i ") . X
10 . We're “protected” if we know we won't get a NullPointerException
11 when trying the test. So, consider our tests:

12} m value < front.data
m current.next != null &% current.next.data < value
?
Have we covered all of our cases now? So, Are We Protected?
Protecting Our Tests! 13 Some LinkedList Tips! ﬁ

—
OOONOOAWNR

el
BWN =

Nope! What happens if front == null? We try to get the value of
front.data, and get a NullPointerException. The fix:

Working Code!
public void addSorted(int value) {
if (front == null || value < front.data) {
ListNode next = front;
front = new ListNode(value, next);

else {

while (current.next !'= null & current.next.data < value) {
current = current.next;

ListNode next = current.next;
current.next = new ListNode(value, next);

Helpfully, this fix actually handles the empty list case correctly!

m Make sure to try all the cases:
m Empty List
m Front of Non-empty List
m Middle of Non-empty List
m Back of Non-empty List

m To Edit a LinkedList, the assignment must look like:

m this.front = <something>;, or
m node.next = <something>; (for some ListNode node in the list)

m Protect All Of Your Conditionals! Make sure that nothing can
accidentally be null.

m When protecting your conditionals, make sure the less complicated
check goes first.

