
Priority Queues &
Huffman Encoding

2

Prioritization problems

● ER scheduling: You are in charge of scheduling patients for
treatment in the ER. A gunshot victim should probably get treatment
sooner than that one guy with a sore neck, regardless of arrival time.
How do we always choose the most urgent case when new patients
continue to arrive?

3

Structure Options

● binary search tree : store in BST, go right for min in O(log N)
● problem: tree becomes unbalanced

● list : store people in a list; remove min/max by searching (O(N))
● problem: expensive to search

● sorted list : store in sorted list; remove in O(1) time
● problem: expensive to add (O(N))

4

Java's PriorityQueue class

 public class PriorityQueue<E> implements Queue<E>

Queue<String> pq = new PriorityQueue<String>();
pq.add(“Rasika");
pq.add(“Radu");
...

Method/Constructor Description Runtime
PriorityQueue<E>() constructs new empty queue O(1)
add(E value) adds value in sorted order O(log N)
clear() removes all elements O(1)
iterator() returns iterator over elements O(1)
peek() returns minimum element O(1)
remove() removes/returns min element O(log N)
size() number of elements in queue O(1)

● priority queue: a collection of ordered elements that provides fast
access to the minimum (or maximum) element

5

Inside a priority queue
● Usually implemented as a heap, a kind of binary tree.

● Instead of sorted left → right, it's sorted top → bottom
● guarantee: each child is greater (lower priority) than its ancestors
● add/remove causes elements to "bubble" up/down the tree
● (take CSE 332 or 373 to learn about implementing heaps!)

906040

8020

10

50 99

85

65

6

Homework 11  
(Huffman Coding)

7

ASCII encoding
● ASCII: Mapping from characters to integers (binary bits).

● Maps every possible character to a number ('A' → 65)
● uses one byte (8 bits) for each character
● most text files on your computer are in ASCII format

Char ASCII value ASCII (binary)

' ' 32 00100000

'a' 97 01100001

'b' 98 01100010

'c' 99 01100011

'e' 101 01100101

'z' 122 01111010

8

aaaaabbbbbaaaaabbbbbaaaaabbbbbaaaa
abbbbbaaaaabbbbbaaaaabbbbbaaaaabbb
bbaaaaabbbbbaaaaabbbbbaaaaabbbbb

100 characters, 50 a's, 50 b's

9

Huffman encoding
● Huffman encoding: Uses variable lengths for different characters to

take advantage of their relative frequencies.
● Some characters occur more often than others. 

If those characters use < 8 bits each, the file will be smaller.
● Other characters need > 8, but that's OK; they're rare.

Char ASCII value ASCII (binary) Hypothetical Huffman

' ' 32 00100000 10

'a' 97 01100001 0001

'b' 98 01100010 01110100

'c' 99 01100011 001100

'e' 101 01100101 1100

'z' 122 01111010 00100011110

10

Huffman's algorithm
● The idea: Create a "Huffman Tree" 

that will tell us a good binary 
representation for each character.
● Left means 0, right means 1.

● example: 'b' is 10

● Example: 0001010

'e'

' cb'

'e'

3. Use priority queue to create Huffman tree →

11

Huffman compression

4. Traverse tree to find (char → binary) map
{' '=00, 'a'=11, 'b'=10, 'c'=010, 'e'=011}

5. For each char in file, convert to compressed binary version
 a b a b c a b e
11 10 00 11 10 00 010 11 10 011

1. Count the occurrences of each character in file
{' '=2, 'a'=3, 'b'=3, 'c'=1, 'e'=1}

2. Place characters and counts into priority queue

12

1) Count characters
● step 1: count occurrences of characters into a map

● example input file contents:
ab ab cab

counts array:

● (in HW11, we do this part for you)

byte 1 2 3 4 5 6 7 8 9

char 'a' 'b' ' ' 'a' 'b' ' ' 'c' 'a' 'b'

ASCII 97 98 32 97 98 32 99 97 98

binary 01100001 01100010 00100000 01100001 01100010 00100000 01100011 01100001 01100010

13

2) Create priority queue
● step 2: place characters and counts into a priority queue

● store a single character and its count as a Huffman node object
● the priority queue will organize them into ascending order

'e'

14

3) Build Huffman tree
● step 2: create "Huffman tree" from the node counts

algorithm:
● Put all node counts into a priority queue.
● while P.Q. size > 1:

● Remove two rarest characters.
● Combine into a single node with these two as its children.

'e'

'e''e'

'e'

15

Build tree example

'e'

16

4) Tree to binary encodings
● The Huffman tree tells you the binary encodings to use.

● left means 0, right means 1
● example: 'b' is 10

● What are the binary 
encodings of: 
 
' ', 
'c', 
'a'?

'e'

17

5) compress the actual file
● Based on the preceding tree, we have the following encodings:

 {' '=00, 'a'=11, 'b'=10, 'c'=010, 'e'=011}

● Using this map, we can encode the file into a shorter binary
representation. The text ab ab cab would be encoded as:

● Overall: 1110001110000101110011, (22 bits, ~3 bytes)

char 'a' 'b' ' ' 'a' 'b' ' ' 'c' 'a' 'b' 'e'

binary 11 10 00 11 10 00 010 11 10 011

byte 1 2 3

char a b a b c a b e

binary 11 10 00 11 10 00 010 1 1 10 011

18

dabdccadadad

Compression example

Compressed binary:

0 11 100 0 101 101 11 0 11 0 11 0

19

Decompressing
How do we decompress a file of Huffman-compressed bits?

● Useful "prefix property"
● No encoding A is the prefix of another encoding B
● I.e. never will have x → 011 and y → 011100110

● The algorithm:
● Read each bit one at a time from the input.
● If the bit is 0, go left in the tree; if it is 1, go right.
● If you reach a leaf node, output the character at that leaf and go back to the tree

root.

20

Decompressing
● Use the tree to decompress a compressed file with these bits:

1011010001101011011

● Read each bit one at a time.
● If it is 0, go left; if 1, go right.
● If you reach a leaf, output the  

character there and go back 
to the tree root.

'e'

● Output:
bac aca

21

Public methods to write
● public HuffmanCode(int[] frequencies)

● Given character frequencies for a file, create Huffman code (Steps
2-3)

● public void save(PrintStream output)
● Write mappings between characters and binary to a output stream

(Step 4)

● public HuffmanCode(Scanner input)
● Reconstruct the tree from a .code file

● public void translate(BitInputStream input,
 PrintStream output)

● Use the Huffman code to decode characters

22

Bit input stream
● Java's input stream reads 1 byte (8 bits) at a time.

● We want to read one single bit at a time.

● BitInputStream: Reads one bit at a time from input.

public BitInputStream(String file) Creates stream to read bits from given file

public int readBit() Reads a single 1 or 0

public void hasNextBit() Checks to see if stream still has input

23

That's it!

