Priority Queues &

Huffman Encoding

Prioritization problems

e ER scheduling: You are in charge of scheduling patients for
treatment in the ER. A gunshot victim should probably get treatment
sooner than that one guy with a sore neck, regardless of arrival time.
How do we always choose the most urgent case when new patients

continue to arrive?

Structure Options

e list : store people in a list; remove min/max by searching (O(N))
problem: expensive to search

e sorted list : store in sorted list; remove in O(1) time
problem: expensive to add (O(N))

e binary search tree : store in BST, go right for min in O(log N)
problem: tree becomes unbalanced

Y

%o,

8

Java's PriorityQueue class

o priority queue: a collection of ordered elements that provides fast

access to the minimum (or maximum) element

public class PriorityQueue<E> implements Queue<E>

Method/Constructor Description Runtime
PriorityQueue<E>() constructs new empty queue O(1)
add(E value) adds value in sorted order O(log N)
clear() removes all elements O(1)
iterator() returns iterator over elements O(1)
peek() returns minimum element O(1)
remove() removes/returns min element O(log N)
size() number of elements in queue O(1)

@itelic S SiEEninie = el
Doy deERE cHle e
pEFaddiEaRa duptis

new PriorityQueue<String> ()

....
e~
—

———— e

Inside a priority queue
e Usually implemented as a heap, a kind of binary tree.

e Instead of sorted left — right, it's sorted top — bottom
e guarantee: each child is greater (lower priority) than its ancestors
* add/remove causes elements to "bubble" up/down the tree
o (take CSE 332 or 373 to learn about implementing heaps!)

Homework 11
(Huffman Coding)

~ ASCII encoding

e

o ASCII: Mapping from characters to integers (binary bits).
» Maps every possible character to a number ('A' — 65)

* uses one byte (8 bits) for each character
* most text files on your computer are in ASCII format

32
977
98
99
101
122

00100000
01100001
01100010
01100011
01100101
01111010

® Untitled ~

aaaaabbbbbaaaaabbbbbaaaaabbbbbaaaa
abbbbbaaaaabbbbbaaaaabbbbbaaaaabbb
bbaaaaabbbbbaaaaabbbbbaaaaabbbbb

100 characters, 50 a's, 50 b's

take advantage of their relative frequencies.
e Some characters occur more often than others.

e

Huffman encoding

e Huffman encoding: Uses variable lengths for different characters to

If those characters use < 8 bits each, the file will be smaller.
» Other characters need > 8, but that's OK; they're rare.

977
98
99
101
122

00100000
01100001
01100010
01100011
01100101
01111010

0001
01110100
001100

1100
00100011110

e ———

Huffman's algorithm

e The idea: Create a "Huffman Tree"
that will tell us a good binary

representation for each character.

» Left means 0, right means 1.
» example: 'b'is 10

» Example: 0001010 0
I Cb'

10

Huffman compression

1. Count the occurrences of each character in file
{v v:2, vav:3, 'b'=3, 'C'Zl, vev:]_}

2. Place characters and counts into priority queue

10

0
1 1 2 3 3 4
front o ZOF — T T back o .
3. Use priority queue to create Huffman tree — > >
oo 1
4. Traverse tree to find (char = binary) map |1 | I,;,I
B S e e o e s e o e e

5. For each char in file, convert to compressed binary version
a b a b @iiiia e

el OeOhEa D000 00 1E i 0s 0

=

1) Count characters

e step 1: count occurrences of characters into a map
» example input file contents:

ab ab cab

lal lbl v v lal lbl v l lcl Val Vbl
97 98 £ 97 98 22 99 97 98
01100001 01100010 00100000 01100001 01100010 00100000 01100011 01100001 01100010
counts array:
index 0 1 32 97 98 99 100
[valwe | 0 T 0] E E 0

* (in HW11, we do this part for you)

12

2) Create priority queue

e step 2: place characters and counts into a priority queue
store a single character and its count as a Huffman node object
the priority queue will organize them into ascending order

front — back

13

3) Build Huffman tree

o step 2: create "Huffman tree" from the node counts

algorithm:
e Put all node counts into a priority queue.

e while P.Q. size > 1:
Remove two rarest characters.

Combine into a single node with these two as its children.

14

back

—e e

4) Tree to binary encodings

e The Huffman tree tells you the binary encodings to use.
10

* left means 0, right means 1
o example: 'b' is 10

* What are the binary
encodings of:

VCV’

vav?

5) compress the actual file

* Based on the preceding tree, we have the following encodings:
ERG R Al A e B S ket el A e e B e A

Using this map, we can encode the file into a shorter binary
representation. The text ab ab cab would be encoded as:

Chal' lal 'b' l L 'a' 'b' ' ! 'C' lal lbl lel

binary fd: 10 00 11 10 00 010 e 10 011

Overall: 1110001110000101110011, (22 bits, ~3 bytes)

byte 1 2 8
char [a Db a b C a it
binary {11 100011 (10000101 [110011

Compression example

o @ Untitled ~

Idabdccadadad

Compressed binary:
G clal] O e e O e O e G e

18

Decompressing

How do we decompress a file of Huffman-compressed bits?

o Useful "prefix property"

No encoding A is the prefix of another encoding B
l.e. never willhave x — 011 andy — 011100110

e The algorithm:
Read each bit one at a time from the input.
If the bit is 0, go left in the tree; ifitis 1, go right.

If you reach a leaf node, output the character at that leaf and go back to tt
root.

19

—

Decompressing

e Use the tree to decompress a compressed file with these bits:

16 B O O OO e el A RO e

Read each bit one at a time.
If it is O, go left; if 1, go right.
If you reach a leaf, output the
character there and go back
to the tree root.

10

e Output:

lolaieiie)

20

—

Public methods to write

e public HuffmanCode (1nt[] frequencies)
Given character frequencies for a file, create Huffman code (Steps
2-3)

e public void save (PrintStream output)
Write mappings between characters and binary to a output stream
(Step 4)

e public HuffmanCode (Scanner input)
Reconstruct the tree from a . code file

e public void translate (BitInputStream input,
I R s S e S s O B O)

Use the Huffman code to decode characters

2l

Bit input stream

e Java's input stream reads 1 byte (8 bits) at a time.
We want to read one single bit at a time.

e BitInputStream: Reads one bit at a time from input.

public BitInputStream(String file) Creates stream to read bits from given file
public int readBit () Reads a single 1 or 0
public void hasNextBit () Checks to see if stream still has input

)

That's it!

