
Adam Blank Spring 2015Lecture 10

CSE143
Computer Programming II

CSE 143: Computer Programming II

Recursion

Outline

1 What is Recursion? Why Bother Learning it?

2 Connecting recursion with things we already know

3 How To Think About Recursion

Find 1337 1

Attempt #1
One person sifts through cards until they find the one with 1337

1 Loop through the cards until you find the one with 1337

Attempt #2
Lazy people offload the work onto others as follows:

1 If you are given a single card, check if it has 1337 on it. If it does,
shout out “I found it!” If it doesn’t, make a frowny face.

2 If you are given multiple cards. . .
1 Give about half of them to the person on your left
2 Give the other half to the person on your right

Recursion in Nature 2 Recursive Structures 3

LinkedLists are recursive structures.

A LinkedList is. . .

a piece of data and a LinkedList, which is
a piece of data and a LinkedList, which is

a piece of data and a LinkedList, which is
a piece of data and a LinkedList, which is

a piece of data and a LinkedList, which is
a piece of data and a LinkedList, which is. . .

A recursive data structure is one made up of smaller versions of the
same data structure.



Recursion is. . . Recursion is. . . 4

Definition (Recursion)
Recursion is the definition of an operation in terms of itself.

To solve a problem with recursion, you break it down into smaller
instances of the problem and solve those.

Definition (Recursive Programming)
Writing methods that call themselves to solve problems recursively

Some problems are naturally recursive which means they’re easy to
solve using recursion and much harder using loops.

Why Learn Recursion? 5

It’s a different way of thinking about problems

Recursion leads to much shorter code to solve difficult problems.

Some programming languages do not have loops.

Many data structures are defined recursively, and recursion is the
easiest way of dealing with those structures.

Evaluating Arithmetic Expressions 6

How do we evaluate the mathematical expression ((1∗17)+(2∗(3+(4∗9))))?
((1 * 17) + (2 * (3 + (4 * 9))))
------------------------------

((1 * 17) + (2 * (3 + (4 * 9))))
------ -----------------

((1 * 17) + (2 * (3 + (4 * 9))))
- -- -----------------

( 17 + (2 * (3 + (4 * 9))))
-- -----------------

( 17 + (2 * (3 + (4 * 9))))
-- - -----------

( 17 + (2 * (3 + (4 * 9))))
-- - - -----

( 17 + (2 * (3 + (4 * 9))))
-- - - - -

( 17 + (2 * (3 + 36 )))
-- - - --

( 17 + (2 * 39 ))
-- - --

( 17 + 78 )
-- --

95
--

Evaluating Expressions: It’s Recursive! 7

Evaluation of a simple expression (1∗3)+(4+2) looks like:

To evaluate (1∗3)+(4+2), first evaluate (1∗3) and (4+2):(1∗3) = 3(4+2) = 6
So, 3+6 = 9.

The big instance of the problem is

(1∗3)+(4+2)
and the smaller instances are

(1∗3) and (4+2)

Psuedocode for eval 8

eval Algorithm
1 Find the outermost operation.
2 Figure out the left and right operands.
3 If left is not a number, eval it. Call the result a.
4 If right is not a number, eval it. Call the result b.
5 Return a op b.

Running eval((1∗3)+(4+2))
1 The outermost operation is +.
2 The left is (1∗3) and the right is (4+2).
3 (1∗3) is not a number. So, evaluate it:

1 The outermost operation is ∗.
2 The left is 1 and the right is 3.
3 a = 1
4 b = 3
5 a∗b = 3

So, a = 3.

4 (4+2) is not a number. So, evaluate it:
1 The outermost operation is +.
2 The left is 4 and the right is 2.
3 a = 4
4 b = 2
5 a+b = 6

So, b = 6.
5 a+b = 9

eval and find1337 9

To eval(e)
If e is a number, return it.
Otherwise, eval the left and the right; put them together with op

To find1337(Listlist):
If list.size() == 1, check if it’s 1337
Otherwise:

1 Split the size n list into two lists list1 and list2
2 Check if 1337 is in list1
3 Check if 1337 is in list2
4 Give up(?!?)

Insight: The Structure of Recursive Problems
Every recursive problem has a “trivial case” (the simplest expression
is a number; the simplest number is 0; the simplest list is size 0).
This case is called the base case.
Every recursive problem breaks the problem up into smaller pieces
(the expression pieces are left and right; the 1337 pieces are halves
of a list). This case is called the recursive case.



The Many Ways To Think About Recursion 10

The Code Already Works!
This is the most important strategy for recursion!

When you are writing a recursive function, pretend that it already
works and use it whenever possible.

Let Someone Else Do The Rest
Recursion is an army of people who can answer instances of your
question. You solve a tiny piece and pass it on to someone else.

This is like the 1337 example!

Where Can I Use My Function?
Before writing your recursive function, write down what it is supposed to
do. Then, when writing it, try to find places that you can apply that idea
to.

Writing the Evaluator 11

Now, let’s go ahead and write the eval function we talked about. The
goals of writing this function are to see the following about recursive
code:

The code is short

The version with loops is horrid

You can do really cool things with recursion

printStars 12

Consider the function printStars:
1 public static void printStars(int n) {
2 for (int i = 0; i < n; i++) {
3 System.out.print("*");
4 }
5 System.out.println();
6 }

Let’s write it recursively.

1 public static void printStars(int n) {
2 if (n == 0) {
3 System.out.println();
4 }
5 else {
6 System.out.print("*");
7 printStars(n − 1);
8 }
9 }

Tracing printStars 13

1 //Run printStars(3)
2 void printStars(int n) { (n = 3)
3 if (n == 0) { (false)
4 System.out.println();
5 }
6 else {
7 System.out.print("*");
8 printStars(n − 1);
9 }

10 }
11 OUTPUT: ↑*↑

1 //Run printStars(2)
2 void printStars(int n) { (n = 2)
3 if (n == 0) { (false)
4 System.out.println();
5 }
6 else {
7 System.out.print("*");
8 printStars(n − 1);
9 }

10 }
11 OUTPUT: *↑*↑

1 //Run printStars(1)
2 void printStars(int n) { (n = 1)
3 if (n == 0) { (false)
4 System.out.println();
5 }
6 else {
7 System.out.print("*");
8 printStars(n − 1);
9 }

10 }
11 OUTPUT: **↑*↑

1 //Run printStars(0)
2 void printStars(int n) { (n = 0)
3 if (n == 0) { (true)
4 System.out.println();
5 }
6 else {
7 System.out.print("*");
8 printStars(n − 1);
9 }

10 }
11 OUTPUT: ***

Tracing printStars 14

1 //Run printStars(3)
2 void printStars(int n) { (n = 3)
3 if (n == 0) { (false)
4 System.out.println();
5 }
6 else {
7 System.out.print("*");
8 printStars(n − 1);
9 }

10 }
11 OUTPUT: ***↑

1 //Run printStars(2)
2 void printStars(int n) { (n = 2)
3 if (n == 0) { (false)
4 System.out.println();
5 }
6 else {
7 System.out.print("*");
8 printStars(n − 1);
9 }

10 }
11 OUTPUT: ***↑

Tracing printStars 15

1 //Run printStars(3)
2 void printStars(int n) { (n = 3)
3 if (n == 0) { (false)
4 System.out.println();
5 }
6 else {
7 System.out.print("*");
8 printStars(n − 1);
9 }

10 }
11 OUTPUT: ***↑



Some Recursion Tips! 16

Once you have a solution, it might feel obvious. This is a tricky
feeling. Solving recursion problems is much harder than
understanding a solution to a recursion problem.

Understand the metaphors/ideas/ways to think about recursion.
Choose one that makes the most sense to you, and run with it.

Recursion will always have at least one base case and at least one
recursive call.

Be able to write down the steps in a recursive trace when given a
recursive function.


