
Adam Blank Spring 2015Lecture 15

CSE143
Computer Programming II

CSE 143: Computer Programming II

More Interfaces &
Iterators

Today’s Goals 1

We begin with ArrayIntList & LinkedIntList.

Our goals are:
To make an interface that captures the behaviors of an “IntList”
To write a client search function in both of these classes
To learn what iterators are (and why they might be useful!)
To re-implement a better version of search using iterators

Interfaces, a reminder 2

An interface is. . .
A promise that you will have certain features
Giving a name to a group of behaviors

Imagine we were a company making safes (the lock things). We make
multiple types of safes. What would they all have in common?

A way to lock the safe
A way to unlock the safe

How about a company making IntLists?
void add(int value)
int get(int index)
void remove(int index)
void set(int index, int value)
int size()
String toString()

This basically is the interface. . .

IntList Interface 3

1 public interface IntList {
2 void add(int value);
3 int get(int index);
4 void remove(int index);
5 void set(int index, int value);
6 int size();
7 String toString();
8 }

Then, to make ArrayIntList and LinkedIntList actually use it:
1 public class ArrayIntList implements IntList {
2 ...
3 }
4
5 public class LinkedIntList implements IntList {
6 ...
7 }

Now, these lines work:
1 IntList list = new ArrayIntList();
2 IntList list = new LinkedIntList();

Now, let’s make a client search function for IntList 4

1 /** Returns true if value can be found in list and false otherwise. */
2 public boolean search(IntList list, int value) {
3 for (int i = 0; i < list.size(); i++) {
4 if (list.get(i) == value) {
5 return true;
6 }
7 }
8 return false;
9 }

Consider the following:
1 IntList arrayList = new ArrayIntList();
2 IntList linkedList = new LinkedIntList();
3 /* Add 1000000 elements to each list... */
4 search(arrayList, 9);
5 search(linkedList, 9);

What is the complexity of the two method calls?
In ArrayIntList, get is an O(1) operation
In LinkedIntList, get is an O(n) operation

So, O(n) and O(n2), respectively.

How do for-each loops work? 5

How does Java KNOW the ordering?

If you were implementing a for-each loop for a type T, what would you
need to be able to do with the elements in that data structure?

We would need to be able to provide them one after one. . .

Java calls this idea an “Iterator”.
Iterator
The Iterator interface allows us to tell Java how to order the elements
of a data structure:

1 public interface Iterator<E> {
2 public boolean hasNext();
3 public E next();
4 public void remove();
5 }

This says, “to be an Iterator, classes must define hasNext, next, and
remove”.

This is a lot like how we use a Scanner!!

Using an Iterator 6

Using a Scanner

1 Scanner input = new Scanner(...);
2 while (input.hasNext()) {
3 System.out.println(input.next());
4 }

Using an Iterator

1 List<Integer> list = new ArrayList<Integer>();
2 ...
3 Iterator<Integer> it = list.iterator();
4 while (it.hasNext()) {
5 System.out.println(it.next());
6 }

You’ve actually been using iterators without knowing it:

Java uses the iterator() method to power for-each loops!

foreach Loop Warning! 7

You Can’t Remove In A foreach Loop!
1 Set<String> set = new TreeSet<String>();
2 set.add("hello");
3 set.add("world");
4 for (String s : set) {
5 if (s.startsWith("h")) {
6 set.remove(s);
7 }
8 }

OUTPUT
>> Exception in thread "main" java.util.ConcurrentModificationException
>> at java.util.TreeMap$PrivateEntryIterator.nextEntry(TreeMap.java:1115)
>> at java.util.TreeMap$KeyIterator.next(TreeMap.java:1169)
>> at Client.main(Client.java:12)

ConcurrentModificationException
A ConcurrentModificationException happens when you try to edit a
structure that you are looping through in a foreach loop. You should
not try to remove inside a foreach loop! It will fail!

Using Iterators to make search better 8

1 /** Returns true if value can be found in list and false otherwise. */
2 public boolean search(IntList list, int value) {
3 Iterator<Integer> it = list.iterator();
4 while (it.hasNext()) {
5 int next = it.next();
6 if (next == value) {
7 return true;
8 }
9 }

10 return false;
11 }

Now, they’re both O(n).

Implementing numberOfOdds in multiple ways 9

As a client. . .
with loops
with iterators

As an implementor. . .
with loops
with iterators

See code for solutions.

