Lecture 14

125

Computer Programming |l

Adam Blank Spring 2015

Storing Multiple Choice Quizzes 1

The text files:
m Each text file corresponds to answers for a multiple choice quiz.
m Each line contains one answer.
m For each quiz, answers.txt represents the correct answers.

MCQuiz Class

1 public class MCQuiz {

2 private String studentName;

3 private String quizName;

4 private List<String> correctAnswers;
5 private List<String> studentAnswers;
6

7 public MCQuiz(String filename) throws FileNotFoundException { ... }
8

9 public String getStudent() { ... }
10 public String getName() { ... }

11 public int numberCorrect() { ... }

12 }
We would like to do the two following tasks:
Print out the quizzes in worst-to-best order (e.g. sort the quizzes)

Collect all quizzes of each particular student together and display
them (still from worst-to-best)

Sorting St

gs 3

Sorting A String List
1 if (list.get(j) < list.get(minIndex)) {
2 minIndex = j;
3}

compareTo
Strings have a method called compareTo that works like < does on ints.
If we have two strings:
String hello = "hello" and String bye = "bye"
To do the test "hello < bye”, we do the following:
Write what we want: hello < bye
Subtract the right from both sides: hello - bye < 0

Replace the subtraction with compareTo:
hello.compareTo(bye) < 0

That's it!

Sorting A String List
1 if (list.get(j).compareTo(list.get(minIndex)) < @) {
2 minIndex = j;

3}

CSE 143: Computer Programming I/

Comparable

T DON'T GET
YOUR CODE.

THESE LINES
FOR?

gk b poke

RY

14 q

T HAVE NO IDEA.
BUT IT DOES NOT
W\ WORK WITHOUT
] 3 THEM.
Lo i L [C%

THE ART OF PROGRAMMING ~ PART 2: KISS

Sorting Integers and Strings 2

Last lecture, we sorted the characters of a string. Let's sort more:
Sorting An Integer List

public static void sortIntList(List<Integer> list) {
for (int i = 0; i < list.size(); i++) {
int minIndex

1

2

3

4 for (int j < list.size(); j++) {
5 if (list.get(j) < list.get(minIndex)) {
6 minIndex = j;

7 }

8)

9 int temp = list.get(minIndex);

10 list.set(minIndex, list.get(i));

1 list.set(i, temp);

12 }

13}

Sorting A String List

1 public static void sortStringlList(List<String> list) {
2 for (int i = 0; i < list.size(); i++) {

3 int minIndex = i;

4 for (int j j < list.size(); j++) {
5 if

6 minIndex =

7 }

8 }

9 String temp = list.get(minIndex);

10 list.set(minIndex, list.get(i));

1 list.set(i, temp);

12 }

13}

Sorting Multiple Ch
Sorting A MCQuiz List

1 public static void sort(List<MCQuiz> list) {

2 for (int i = 0; i < list.size(); i++) {

3 int minIndex = i;

4 for (int j = i; j < list.size(); j++) {

5 if (list.get(j).numberCorrect() < list.get(minIndex).numberCorrect()) {
6

7

8

9

ce Quizzes 4

minIndex = j;

}
}
MCQuiz temp = list.get(minIndex);
10 list.set(minIndex, list.get(i));
1 list.set(i, temp);
12 }
13}

Strings were easier, because they knew how to compare themselves.

Implementing A compareTo
public int compareTo(MCQuiz other) {
// From above: list.get(j).numberCorrect() < list.get(minIndex).numberCorrect()
// Replacing: this.numberCorrect() < other.numberCorrect()
// Converting: this.numberCorrect() - other.numberCorrect() < 0
return this.numberCorrect() — other.numberCorrect();

oo s w e e

}

Sorting An MCQuiz List

if (list.get(j).compareTo(list.get(minIndex)) < 0) {
2 minIndex = j;

3}

How do sort and TreeSet work? 5

How do sort and TreeSet KNOW the ordering?

If you were implementing sort for a type T, what would you need to be
able to do with T a and T b?

We would need to be able to COMPARE a and b

That's just an interface! Java calls it “Comparable”.

Comparable

The Comparable interface allows us to tell Java how to sort a type of
object:

public interface Comparable<E> {
public int compareTo(E other)
}

This says, “to be Comparable, classes must define compareTo”.

MCQuiz: Defining compareTo 7

R WN R

oA WN R

Attempt #1

public class MCQuiz implements Comparable<MCQuiz> {

public int compareTo(MCQuiz other) {
return this.numberCorrect() - other.numberCorrect();

}

This doesn't; work, because if we have a quiz where someone got 1/10
and another where someone else got 1/5, we treat them as the same.

Attempt #2

public class MCQuiz implements Comparable<MCQuiz> {

public int compareTo(MCQuiz other) {
return (double)this.numberCorrect()/this.correctAnswers.size() -
(double)other.numberCorrect()/other.correctAnswers.size();
}

This won't even compile! We need to return an int.

MCQuiz: Defining compareTo 9

oo s wn o~

B A

Attempt #3
public class MCQuiz implements Comparable<MCQuiz> {
public int compareTo(MCQuiz other) {
Double thisPer = (double)this.numberCorrect()/this.correctAnswers.size();

Double otherPer = (double)other.numberCorrect()/other.correctAnswers.size();
return thisPer.compareTo(otherPer);

This still doesn't work, because it doesn't take the names of the
students into account.

In particular, if two students both get 1/10 on a quiz, our compareTo
method says “it doesn’'t matter which one goes first”.

Attempt #4

public class MCQuiz implements Comparable<MCQuiz> {

public int compareTo(MCQuiz other) {
Double thisPer = (double)this.numberCorrect()/this.correctAnswers.size();
Double otherPer = (double)other.numberCorrect()/other.correctAnswers.size();
int result = thisPer.compareTo(otherPer);
if (result == 0) { result = this.studentName.compareTo(other.studentName); }
return result;

}

This still doesn’t work, but it's not as clear why. Let's try the second
task.

Printing The Quizzes in Order 6

DU AWN R

[N}

Client Code to Print The Quizzes

List<MCQuiz> quizzes = createQuizzes(2);

// First, let’s get a sorted list of the quizzes

Collections.sort(quizzes);

for (MCQuiz quiz : quizzes) {
System.out.println(quiz);

This doesn't work, because Java doesn’t know how to sort MCQuizzes.

Comparable

The Comparable interface allows us to tell Java how to sort a type of
object:

public interface Comparable<E> {
public int compareTo(E other)

}

This says, “to be Comparable, classes must define compareTo”.

Comparable: Tricks #1 & #2 8

QR WN =

[SIF NN

int Fields

If we have a field int x in our class, and we want to compare with it,
our code should look like:

public class Sample implements Comparable<Sample> {
public int compareTo(Sample other) {
return ((Integer)this.x).compareTo(other.x);

}

Object Fields

If we have a field Thing x in our class, and we want to compare with it,
our code should look like:

public class Sample implements Comparable<Sample> {
public int compareTo(Sample other) {
return this.x.compareTo(other.x);
}
}

In other words, just use the existing compareTo on the field in the class!

Grouping the Quizzes by Student

©O~NOG AR WN =

11
12
13
14

16

What data structure should we use to group the quizzes? A Map!
Map Question: “Which quizzes were taken by this student?”
Keys: Strings (the student names)

Values: Set<MCQuiz> (all the quizzes that student took).

List<MCQuiz> quizzes = createQuizzes(2);
Map<String, Set<MCQuiz>> quizzesByStudent = new TreeMap<>();
// We want to loop over all the quizzes, adding them one by one
for (MCQuiz quiz : quizzes) {

String name = quiz.getStudent();

if (!quizzesByStudent.containsKey(name)) {

quizzesByStudent.put(name, new TreeSet<MCQuiz>());

}

quizzesByStudent.get(name).add(quiz);
}
// Now, we want to print out the quizzes student by student:

for (String student : quizzesByStudent.keySet()) {
System.out.println(student + ": " + quizzesByStudent.get(student));

1
2
3
4
5
6
7
8
9

uping the Quizzes by Stud
The output looks like this:

OUTPUT

>> AdamBlank: [,
>> BarbaraHarri
>> ChrisHill: [

>> TeresaHall:

AdamBlank (quizi): 1/11, AdamBlank (quiz0): 4/11]
s: [BarbaraHarris (quizl): 3/11, BarbaraHarris (quiz0): 4/11]
ChrisHill (quiz0): 3/11, ChrisHill (quizl): 4/11]

>> JessicaHerna: [JessicaHernan (quiz1): 1/11, JessicaHernan (quiz0): 2/11]

[TeresaHall (quiz0): 4/11]

Why does Teresa only have one quiz? She scored the same on both of

her quizzes and compareTo said they were the same!

Final Attempt

public class MCQuiz implements Comparable<MCQuiz> {

public int compareTo(MCQuiz other) {

Double thisPer = (double)this.numberCorrect()/this.correctAnswers.size();
Double otherPer = (double)other.numberCorrect()/other.correctAnswers.size();

int result
if (result
result =

if (result
result =

= thisPer.compareTo(otherPer);

) A
this.studentName.compareTo(other.studentName) ;

this.quizName.compareTo(other.quizName);

return result;

}
Lesson: Whe

n you write compareTo, make sure that

a.compareTo(b) == 0 exactly when a.equals(b)

11

Some Comparable Tips

m Understand multi-level structures
m Use the most general interface as possible

m When implementing compareTo, make sure to use all the fields that
make it different (to put another way: a.compareTo(b) ==
exactly when a.equals (b))

m Remember that inside classes, you can look at the fields of other
instances of that class

