
Adam Blank Spring 2015Lecture 22

CSE
143

Computer Programming II

CSE 143: Computer Programming II

Binary Search Trees
(BSTs)

Outline

1 More Tree Methods

2 Introducing BSTs

3 BST Methods

Another Tree Method 1

height

Write a tree method called height (inside the IntTree class) with the
following method signature:

public int height()

that returns the number of nodes on the longest path from the root to
any leaf. For example,

0

root

10

5

6

7

8

80

90

100

root

1

2

3 4

5

root

height is 1 height is 5 height is 3

height Solution 2

1 public int height() {
2 return height(this.root);
3 }
4
5 private int height(IntTreeNode current) {
6 // A null tree has height 0
7 if (current == null) {
8 return 0;
9 }

10 else {
11 // Find the largest path by taking the max
12 // of both branches recursively (and adding 1 for this node)
13 return 1 + Math.max(
14 height(current.left),
15 height(current.right)
16);
17 }
18 }

Back to contains 3

Recall contains()
1 private boolean contains(IntTreeNode current, int value) {
2 /* If the tree is null, it definitely doesn’t contain value... */
3 if (current == null) { return false; }
4
5 /* If current *is* value, we found it! */
6 else if (current.data == value) { return true; }
7
8 else {
9 return contains(current.left, value) ||

10 contains(current.right, value);
11 }
12 }

Runtime of contains(7)

Consider the following tree:

Which nodes do we visit for contains(7)

4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code O(n). Can we do better?

Back to contains 3

Recall contains()
1 private boolean contains(IntTreeNode current, int value) {
2 /* If the tree is null, it definitely doesn’t contain value... */
3 if (current == null) { return false; }
4
5 /* If current *is* value, we found it! */
6 else if (current.data == value) { return true; }
7
8 else {
9 return contains(current.left, value) ||

10 contains(current.right, value);
11 }
12 }

Runtime of contains(7)

Consider the following tree: Which nodes do we visit for contains(7)
4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code O(n). Can we do better?

Back to contains 3

Recall contains()
1 private boolean contains(IntTreeNode current, int value) {
2 /* If the tree is null, it definitely doesn’t contain value... */
3 if (current == null) { return false; }
4
5 /* If current *is* value, we found it! */
6 else if (current.data == value) { return true; }
7
8 else {
9 return contains(current.left, value) ||

10 contains(current.right, value);
11 }
12 }

Runtime of contains(7)

Consider the following tree: Which nodes do we visit for contains(7)
4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code O(n). Can we do better?

Doing Better! 4

In general, we can’t do better. BUT, sometimes, we can!

Definition (Binary SEARCH Tree (BST))
A binary tree is a BST when an in-order traversal of the tree yields a
sorted list.

To put it another way, a binary tree is a BST when:
All data “to the left of” a node is less than it
All data “to the right of” a node is greater than it
All sub-trees of the binary tree are also BSTs

Example (Which of the following are BSTs?)

1

2 3

root

2

1 3

root 10

2

1 3

6

12

root

NO YES NO

Checking isBST 5

isBST
Write a function isBST with the following signature:

private boolean isBST(IntTreeNode current, int min, int
max)

that returns true if the tree at root current is a BST.

1 private boolean isBST(IntTreeNode current, int min, int max) {
2 if (current == null) {
3 return true;
4 }
5 else if (current.data < min || current.data > max) {
6 return false;
7 }
8 else if (!isBST(current.left, min, current.data)) {
9 return false;

10 }
11 else {
12 return isBST(current.right, current.data, max);
13 }
14 }

contains (AGAIN!) 6

Write contains() for a BST
Fix contains so that it takes advantage of the BST properties.

Recall contains()
1 private boolean contains(IntTreeNode current, int value) {
2 /* If the tree is null, it definitely doesn’t contain value... */
3 if (current == null) { return false; }
4
5 /* If current *is* value, we found it! */
6 else if (current.data == value) { return true; }
7
8 else if (current.data < value) {
9 return contains(current.right, value);

10 }
11 else {
12 return contains(current.left, value);
13 }
14 }

Tracing the new contains 7

Runtime of (better) contains(7)

Consider the following tree:

Which nodes do we visit for contains(7)

4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code logn. Much better!

WARNING!
Consider the following tree: 1

2

3

4

5

6

7

This is the same tree, but now we have to visit all the nodes!

Tracing the new contains 7

Runtime of (better) contains(7)

Consider the following tree: Which nodes do we visit for contains(7)
4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code logn. Much better!

WARNING!
Consider the following tree: 1

2

3

4

5

6

7

This is the same tree, but now we have to visit all the nodes!

Adding to a BST! 8

add
Write a method add in the BST class with the following signature:

public void add(int value);

that preserves the BST property.

Example (tree.add(49))

Before After
55

29

-3 42

87

60 91

55

29

-3 42

49

87

60 91

Adding to a BST (Attempt #1) 9

Attempt #1
1 public void add(int value) {
2 add(this.root, value);
3 }
4 private void add(IntTreeNode current, int value) {
5 if (current == null) {
6 current = new IntTreeNode(value);
7 }
8 else if (current.data > value) {
9 add(current.left, value);

10 }
11 else if (current.data < value) {
12 add(current.right, value);
13 }
14 }

What’s wrong with this solution?
Just like with LinkedLists where we must change front or .next,
we’re not actually changing anything here. We’re discarding the result.

x = change(x) 10

Consider the following code:
1 public static void main(String[] args) {
2 String s = "hello world";
3 s.toUpperCase();
4 System.out.println(s);
5 }

OUTPUT
>> hello world

1 public static void main(String[] args) {
2 String s = "hello world";
3 s = s.toUpperCase();
4 System.out.println(s);
5 }

OUTPUT
>> HELLO WORLD

We must USE the result; otherwise, it gets discarded

x = change(x) 11

If you want to write a method that can change the object that a variable
refers to, you must do three things:

1 Pass in the original state of the object to the method
2 Return the new (possibly changed) object from the method
3 Re-assign the caller’s variable to store the returned result
1 p = change(p); // in main
2 public static Point change(Point thePoint) {
3 thePoint = new Point(99, −1);
4 return thePoint;
5 }

Adding to a BST (Fixed) 12

Fixed Attempt
1 public void add(int value) {
2 this.root = add(this.root, value);
3 }
4 private IntTreeNode add(IntTreeNode current, int value) {
5 if (current == null) {
6 current = new IntTreeNode(value);
7 }
8 else if (current.data > value) {
9 current.left = add(current.left, value);

10 }
11 else if (current.data < value) {
12 current.right = add(current.right, value);
13 }
14 return current;
15 }

This works because we always update the result, always return the
result, and always update the root.

BST Tips! 13

BSTs can make searching/inserting/etc. much faster.

Make sure that you can figure out if a tree is a BST or not.

Whenever you are writing a BST method, you must use the x =
change(x) pattern. It won’t work otherwise.

	More Tree Methods
	Introducing BSTs
	BST Methods

